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ABSTRACT

Current motion tracking technologies fail to provide accurate wide area tracking of
multiple users without interference and occlusion problems. These limitations make
difficult the construction of a practical and intuitive interface, which allows humans to be
inserted into networked virtual environmentsin afully immersive manner. Advancesin the
field of miniature sensors make possible inertial/magnetic tracking of human body limb
segment orientation without the limitations of current systems. Due to implementation
challenges, inertial/magnetic sensors have not previously been used successfully for full
body motion capture. Thisresearch proposesto overcome these challenges using multi-axis
sensors combined with a quaternion-based complementary filter algorithm capable of
continuously correcting for drift and following motion through all orientations without
singularities.

Primarily, this research involves the development of a prototype tracking system to
demonstrate the feasibility of hybrid RF/magnetic/inertial motion tracking. Construction of
inertial/magnetic (MARG) sensors is completed using off-the-shelf components.
Mathematical analysis and computer simulation are used to validate the correctness of the
complementary filter algorithm. The implemented human body model utilizes the world-
coordinate reference frame orientation data provided in quaternion form by the
complementary filter and orients each limb segment independently. Calibration of the
model and the inertial sensors is accomplished using simple but effective algorithms.
Physical experiments demonstrate the utility of the proposed system. These experiments
involve the tracking of human limbs in real-time using multiple inertial sensors.

The motion tracking system produced has an accuracy which is comparable and a
latency which is superior to active electro-magnetic sensors. The system is “ sourceless’
and does not suffer from range restrictions and interference problems. With additional
MARG sensor packages, the architecture produced will easily scale to full body tracking.

This new technology overcomes the limitations of motion tracking technologies currently



in use. It will provide wide area tracking of multiple users in virtua environment and

augmented reality applications.
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. INTRODUCTION

A. MOTIVATION

Fully developed networked synthetic environments (SE) stand to revolutionize the
fields of education, training, business, retailing and entertainment. They will fundamentally
alter our societies and the way in which mankind views the world. In the educational field,
synthetic environments will offer the ultimate in hands-on and visualization of difficult
concepts. They will alow training to transpire in a place much like that in which the skills
being practiced will be used without exposure to possible hazards and at less cost. In the
workplace, employees will be able to work “side by side” even though they may be
physically separated by hundreds or even thousands of miles. Using synthetic
environments, corporations will obtain a safe, economical and efficient method of testing
new concepts and systems. Retailerswill create virtual department stores where consumers
will be able to try out products to an unprecedented degree before actually buying them.
Using synthetic environments, the entertainment industry will be able to create entire
worldsin which customerswill be ableto experiencethrillsand live out entire fantasy lives.
[Ref. 21.][Ref. 97.]

The power of the synthetic environment lies in its ability to immerse usersin a
different world. The more complete the immersion, the more effective the synthetic
environment. For completeimmersion, the user should sense and interact with the synthetic
environment in the same manner in which interaction with the natural world takes place.
Interaction in the natural world results from body motion. Information regarding the
surrounding environment is obtained through the five senses. Changes in body posture and
position directly affect what is seen, heard, felt and smelled. The parameters sensed in the
environment are altered and manipulated by the actions of the body. Thus, in order for a
user to interact with a synthetic environment in a natural way and have the synthetic
environment present appropriate information to the senses, it is imperative that data

regarding body motion and posture be obtained. Body posture and location data are also



needed in multi-user environments to drive the animation of avatars which represent the
actions of users of the environment to each other.

At this time, there is no practical and intuitive interface that allows an individual
human to be inserted into a SE in a fully immersive manner. Numerous motion tracking
technologies are currently in use, but each suffers from its own set of limitations.
Depending on the technology, these limitations may include marginal accuracy, user
encumbrance, restricted range, susceptibility to interference and noise, poor registration,
occlusion difficulties and high latency. Due to these problems, rea-time animations of
avatars must be largely script-based using motion libraries. For the most part, only asingle
user may be tracked in a small working volume. Thus, none of the current technologies
fulfills the need for wide-area tracking of multiple users. The ideal motion tracking
technol ogy must meet several requirements. It should have low latency, be tolerant to noise
and other environmental interference, track multiple users and maintain both adequate
accuracy and registration throughout a large working volume [Ref. 62.].

The primary reason current tracking systemsfail to meet the requirements described
aboveisthe dependence of these systems on a generated “ source” to determine orientation
and location information. This source may be sent by transmitters to body-based receivers
or it may be sent from body-based transmitters to receivers positioned at known locations
throughout the working volume. Usually the effective range of this source is extremely
limited or there may be compromises between resolution and range. Interference with or
distortion of this source will at best result in erroneous orientation and position
measurements. If the source is no longer received, it can cause a complete loss of track.
Huge gains in reliability and capability would be achieved through the development of a
“sourceless’ sensor technology which could determine orientation and position without
depending on an externally generated source.

The development of micromachined magnetometers and inertial sensors over the
last few years makesit possible to determine orientation based on the passive measurement

of physical quantities which are directly related to the motion and orientation of arigid



body to which they are attached. The “sourceless’ nature of inertial and magnetic
orientation tracking makes possible a full body posture tracking system that avoids the
problems associated with current technologies and ultimately allows tracking over a
virtually unlimited area.

I nertial/magnetic orientation tracking is based upon established algorithmsin which
local magnetic field, angular velocity, and linear acceleration data are combined to obtain
estimates of location and orientation. It involves placing miniature sensor units on the body
segments to be tracked. In the method discussed here, each unit contains a three-axis
magnetometer, a three-axis angular rate sensor, and a three-axis accelerometer. In this
document, nine-axes sensor units of thistype arereferred to as MARG (Magnetic, Angular
Rate, Gravity) sensors[Ref. 6.] Integration of angular rate sensor data provides the
information necessary to calculate the orientation of a human body segment for relatively
short time periods. However, sensor drift and bias errors associated with small and
inexpensive sensors make it impractical to track orientation for long time periods. In the
long term, accelerometers can be used to determine the direction of the local vertical by
sensing acceleration due to gravity. In a similar manner, magnetometers can sense the
direction of the local magnetic field. Thus, use of data from these complementary sensors
can be used to eliminate drift by continuous correction of the orientation obtained using rate
sensor data. In this manner a continuously accurate estimate of the orientation of each
individual limb segment can be obtained.

The orientation obtained using MARG sensors is in an earth fixed coordinate
reference frame. Using this information, each limb segment can be oriented within the
synthetic environment without regard to the orientation of adjacent segments [Ref.
64.][Ref. 28.]. The posture of the user can then be reconstructed by simply attaching the
representations of individual limb segments together in the same manner in which the
corresponding segments on the body of the user are connected. There is no need for

transformations between limb segment associated coordinate frames nor for determination



of joint angles. Body posture is entirely determined based upon limb segment orientation
and length.

It should be noted that though it is possible to determine limb segment orientation
and hence body posture using only inertial and magnetic data, determining position
requires double integration of linear acceleration data. The inherent noise, manufacturing
defects, and measurement errors associated with low cost inertial sensors, and the quadratic
growth of errors through double integration, makes uncorrected acceleration-based
position tracking impractical for more than a very short period. Positioning of the user's
avatar within the synthetic environment would thus be better accomplished through the use
of a long range positioning system which is not susceptible to interference or noise to
precisely locate a single body reference point. Depending on the accuracy required, GPS
could be used in outdoor applications to provide the required position vector [Ref. 45.]. A
more precise spread spectrum radio frequency (RF) positioning system could be used for
indoor applications or applications requiring greater accuracy.[Ref. 24.]

In the complete inertial tracking system, individual MARG sensors will output the
angular orientations of each tracked body segment. The outputs of these sensors will be
conditioned and at least partially processed by a small wearable computer carried by the
user. A position vector for at least one point on the body would be determined with the aid
of an RF spread spectrum positioning system. These data would then be packaged into a
serialized bit-stream and sent via wireless transmission to a base electronics package for
further processing and submission to asynthetic environment. The resulting orientation and
position datawould be used to drive the animations of human avatarsin anetworked virtual
environment and provide posture and location correct information to the senses of the user.
If difficulties arise dueto intermittent reception of RF positioning information, location can

be estimated inertialy for short periods of time.



B. GOALS

The research outlined in this document proposes to demonstrate the feasibility and
capabilities of full body angle tracking by tracking human limb segments using multiple
prototype MARG sensors.

1. Problem to be Solved

Severa challenges have been overcome to bring a magnetic/inertial orientation
tracking system to fruition. Inertial orientation tracking in high acceleration applications
without serious drift error requires an integrated nine-axis sensor containing a three-axis
accelerometer, a three-axis rate sensor and a three-axis magnetometer. Each sensor triad
must be properly calibrated to determine sensor nulls and scale factors. Filtering and
combining sensor data in a complementary manner requires the design of an efficient, but
accurate software filter capable of tracking continuously in all orientations without
singularities. Furthermore, using world-coordinate frame orientation data to drive the
animation of an avatar requires development of a simplified human body model which
allows independent positioning of each limb segment. Since the sensors can not be
precisely mounted on each limb segment in a predefined position, the human model must
take into account the offset between the body axes of each limb segment and the axes of the
attached sensor. Finally, the animation of the avatar must take place with minimal lag and

latency.

2. What is Fundamentally New

This research demonstrates a new technology for human body tracking in
networked virtual environment applications. It shows that it is possible to construct afull-
body tracking system capable of accurately determining body posture with minimal lag
throughout a large working volume without occlusion problems. Unlike current body
tracking technologies, the system is not continuously dependent upon any external source.
This work describes the development of a novel nine-axis inertial sensor containing three

orthogonal accelerometers, three orthogonal angular rate sensors, and three orthogonal



magnetometers mounted in combination. At the core of the system is a complementary
filter based upon quaternions. The software filter can track human body limb segments
through all orientations without singularities. Drift corrections are performed continuously.
Though the filter is nonlinear, it can be shown through nonlinear simulations and actual
system performance that linear analysis of thefilter isrelevant and can by used as amethod
for selecting scale factors and for predicting performance. Animation of the avatar is
accomplished using only orientation data. There is no need for complex kinematic
computations to determine joint angles. Novel algorithms alow calibration of both the
sensors and the human body model offsets quickly and accurately with no special

equipment.

3. Contribution of this Resear ch

This research demonstrates a new technology that overcomes the limitations of
motion tracking technologies currently in use. Thetechnology is capable of providing wide
area tracking of multiple users for synthetic environment and augmented reality
applications. This system makes a significant step toward “total immersion” of usersin a

networked synthetic environment by alowing them to interface with it using their natural

bodies.

C. METHOD

Primarily, this research involves the development of a prototype MARG sensor
tracking system including innovative calibration and angle tracking software. Examination
of thisimplementation demonstrates the feasibility of ahybrid MARG/RF motion tracking
system for networked synthetic environments.

Mathematical analysis, computer simulation and physical experiments are used to
validate the correctness of the complementary filter algorithm as well as the human body
model. The analysisislargely based upon linear approximation of the nonlinear problem.

Frequency domain methods are used for analytic determination of system response



characteristics. Nonlinear computer simulations are used to confirm the validity of the
linear approximations.

Physical experiments have been completed to convincingly demonstrate the utility
of the proposed system. These experiments involve the tracking of a human limb using
prototype inertial sensors. Sensor data is provided to multiple quaternion filter software
objects. Each quaternion orientation filter object corresponds to a particular human limb
segment or segments and thus provides the orientation of it. These orientations are used to
drive the animations of a human model in real-time.

Qualitative and quantitative results provide data for comparison to other motion
tracking technologies. Preliminary attempts are made to estimate the performance
parameters of the prototype system. System sensitivity to interference and noise is also

examined.

D. DISSERTATION ORGANIZATION

This dissertation contains seven chapters.

» Chapter Il presents a survey of motion tracking technologies currently in use
with comments regarding the strengths and weaknesses of each. Included is
a discussion of the performance parameters which are required to track the
human body for real-time synthetic environment applications. Chapter |1 also
provides a framework under which motion tracking technologies can be

evaluated.

» Chapter 11l reviews different methods of representing the orientation of a
rigid body with particular emphasis on quaternions and Euler angles. Various
general methods of modeling the human body for synthetic environment

applications are discussed as well.



Chapter 1V briefly presents the current state of micromachined sensor
technology and reviews the fundamentals of software filter theory which

pertain to human body tracking.

Chapter V presents a description of a complementary filter based upon a
guaternion representation of orientation. Analysis as well as simulation

results for the complementary quaternion attitude filter are included.

Chapter V1 describes a prototype system for tracking human limb segments.
The theory and agorithms used to calibrate the multi-axis sensors and the

human body model are discussed.

Chapter VII presents the results of experiments designed to quantify the
performance of the prototype system. These data provide some indication of
the performance which could be expected of acomplete human body tracking

system.

Thefinal chapter of thisdocument presents conclusions and outlinesthework
which must be completed to build a complete human body tracking system

capable of tracking multi-users in alarge working environment.

Appendix A contains detailed derivations of the Gauss-Newton iteration
eguations. Appendix B contains a derivation of the associated X matrix.
Appendix C is a video demonstration of the body tracking system in

operation.



1. SURVEY OF TRACKING TECHNOLOGIES

A. INTRODUCTION

The following survey is meant to establish the technological environment under
which magnetic/inertial body tracking is introduced. Though specific examples of the
various types of tracking systems are discussed, no attempt is made to comprehensively
cover the multitude of tracking systems currently available on the market or being
researched. Rather, the purpose is to establish the general limitations and performance

capabilities of the various motion capture technologies available at the time of thiswriting.

B. MOTION TRACKING TECHNOLOGIES

In general, position and orientation tracking has seen insufficient innovation and
development over the past decade. This continues to hamper advanced development of
immersive systems that allow participants to enter and navigate simulated environments
[Ref. 97.]. Today’ scommercia motion tracking systems are based on optical, magnetic and
acoustic sources. Inertial sensing has been used for head tracking. RF positioning shows
promise, but no small scale commercial systemsare currently available for indoor use. The
most popular trackers are active AC or DC magnetic systems. Before each of these
technologies can be examined, two baselines must be established. First, in order to allow
comparison of technologies, a“framework for suitability” isneeded. Second, it isnecessary
to determine the specific performance characteristics that a human motion tracking system
should have, based upon the dynamics of human body motion and research relating to

human factorsin synthetic environments.

a. Framework for Suitability

Several frameworks for use in the analysis of tracking technologies have
been suggested [Ref. 62.], [Ref. 78.], [Ref. 21.]. Each proposes a similar method for

categorizing the strengths and weaknesses of a particular technology. A basic framework



which is based upon those mentioned above is provided here. Five key measures are
proposed: resolution, registration, responsiveness, robustness, and sociability.

Resolution is the smallest change a system can detect. Poor resolution will
allow the user to move without any corresponding change being expressed by the avatar
within the synthetic environment. Without fine enough resolution, small details in the
motion of auser will not be captured.

Registration is a measure of the correspondence between the position and
orientation reported by the motion tracking system and the true position and orientation.
Without adequate registration, it is not possible for individuals to interact with physical
objects while immersed within the synthetic environment. Nor would it be possible for two
usersto physically interact with each other and perform simple actions such as ahandshake.
Registration is a function not only of tracking accuracy, but the aso the fidelity of the
correspondence between the avatar and the subject being tracked.

Overall responsiveness is determined by sample rate, data rate, and update
rate. Responsiveness is fundamentally related to system latency or lag, which can be
defined as the time delay between the movement of a tracked object and a corresponding
update of the state of the synthetic environment. Lag which isimperceptible to the user will
still degrade human performance due to dynamic registration errors. Systems with poor
responsiveness make it difficult for the user to experience a fegling of presence. In some
cases, latency can lead to ssimulator sickness. [Ref. 21.]

Robustness measures the susceptibility of atracker to noise and interference
within the operating environment. In a system with low tolerance to environmental noise,
extreme errors may be present in the reported position and orientation. Inconsistency in
these errors may make correction difficult using either software filters or lookup tables.

Sociability isan important measure of the suitability of atracking systemto
wide area applications involving multiple users. Good sociability provides an extended

range of operation under which resolution and registration are maintained as well afitness
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for tracking multiple objects. There should be no collateral effects such as one remote

object altering the reported position of another through either interference or occlusion.

b. Performance Requirements

To determine the minimum requirements for motion tracking performance,
it is necessary to analyze the speed, force and frequency of human motion. Since hand and
arm motions represent the quickest motions of the body, it can be assumed that a system
capable of tracking the hands and arms will be able to track the rest of the body. Normal
arm movements are accomplished with wrist tangential velocities of up to 3 m/s and
accelerations not usually exceeding 5 to 6 g. Faster arm motions, such as throwing a
baseball, may involve velocities of 37 m/sand accelerationsin excess of 25 g. Normal hand
motion bandwidth is around 2 Hz, while the fastest hand motions are in the 5-6 Hz range.
Reflex actions may be on the order of 10 Hz [Ref. 12.]. Based on these values, a sampling
rate on the order of 20 Hz would satisfy the requirements of the Nyquist sampling theorem
[Ref. 14.]. In applications using sensors which are susceptible to noise, a general rule of
thumb calls for 20 times oversampling. Thus, if 5 Hz is taken as the normal bandwidth of
hand motions, human motion tracking requires a sampling rate of 100 Hz.

It is generally accepted that humans are more sensitive to changes in the
rotation angle of proximal jointsthan in moredistal joints. Changesin the position of alimb
are usually experienced by the subject as a consequence of sensory receptors in the muscle
propelling the motion [Ref. 40.]. The minimal passive changes humans will perceive in
finger joints is about 2.5 degrees. For the wrist or elbow, a change of approximately 2
degrees is required. The minimal perceptible change in shoulder rotation is about 0.8
degrees [Ref. 21.]. Thus, a body sensor capable of resolving orientation to within 0.5
degrees should produce information which will not be in conflict with the kinesthetic
nervous system of the user. Head tracking requires accuracy that is an order of magnitude
greater than that required by body tracking applications. [Ref. 47.] Several authors call for

orientation estimates which are accurate to within afew hundredths of adegree and position
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which is accurate to within a tenth of a millimeter [Ref. 21.][Ref. 29.]. Thus, any system
whichis able to meet the stringent requirements of head tracking would satisfy those of the
rest of the body.

Humans are extremely sensitive to lag. Depending upon the task, time lags
of greater than 100 msec can degrade performance. For head tracking applications, delays
of as little as 60 msec between head motion and visual feedback are known to impair
adaptation and may cause simulator sickness. If lag exceeds 300 msec, humans will begin
to dissociate their movements from the displayed environment. A lag of greater than one
second will force the user to adopt a move-and-wait strategy in order to complete atask. In
general, aslag increases, user performance and speed decreases while the number of errors
increases. [Ref. 21.][Ref. 47.]

In atypical SE system, there are multiple sources of lag. These include user
input device lag, application-dependent processing lag, rendering lag, synchronization lag,
and frame-rate-induced lag [Ref. 95.]. Often, it isdifficult to determine that part of the total
system delay which is due to the input device [Ref. 1.]. In any event, this lag should only
account for asmall portion of the total delay. Typical, input device lag ranges from 10 to
120 msec depending upon the type of filtering being performed and the mode of operation.

Kaman and Weiner predictive filtering can be used to extrapolate future
time values based on previous user input data. To minimize the lag perceived by the user,
the prediction algorithm normally attempts to project the user input data to the time at
which results from these data reach the visual display. [Ref. 95.] This method reduces
perceived lag as long as the user input device sampling rate is adequate and prediction too
far into the future is not attempted.

What follows is a short survey of current methods used for motion tracking.
Examples of some specific systems are provided to illustrate the current state of the art.
Many of these systems have fairly high latency, marginal accuracy, moderate noise levels,
and limited range. At thistime, none is capable of fully meeting the need for a natural and

intuitive whole body interface. Range restrictions produce a severe limitation in many of



today's motion measurement technologies due to a dependence upon a generated source,
which rapidly losses strength as range increases. Often, each user being tracked must
compete with other users in the virtual environment either for access to the source or for
space within asmall working volume. This severely limits the number of users that can be
tracked in the same areaand essentially requiresthat all users be tracked in separate remote

locations.

1. Mechanical Trackers

Mechanical tracking systems are perhaps the oldest motion tracking technology
[Ref. 80.]. They providethe best means of providing haptic feedback to the user of avirtual
environment. These systems are fairly accurate and have low latency. Current research
generaly involves using these tracking systems to calibrate other types of trackers. [Ref.
44.] Mechanical trackers can be placed in two separate categories. Here these categories
will be termed body-based and ground-based.

Body-based systems utilize an exoskel eton which isentirely worn by the user of the
synthetic environment. Goniometers within the skeleton linkages have a genera
correspondence to thejoints of the user. These angle measuring devices providejoint angle
data to kinematic algorithms which are used to determine end effector position as well as
body posture. Since body-based systems are worn by the user, some other system must be
used to ascertain position within the environment.

Attachment of the body-based linkages as well as the positioning of the
goniometers present several problems. The soft tissue of the body allows the position of the
linkages relative to the body to change as motion occurs. Even without these changes,
alignment of the goniometer with body jointsisdifficult. Thisisespecialy truefor multiple
degree of freedom (DOF) joints. Since goniometers must be mounted externally, there will
always be an offset from their centers of rotation to that of the actual joint. Human joints
are not perfect hinges or spherical joints. Thus, any technology based upon this

simplification will incur errors.



Due to variations in anthropometric measurements, body-based systems must be
recalibrated for each user. This recalibration can be complicated and require an extensive
period of time. Perhaps the most significant drawback of body-based systems is user
encumbrance. Users must bear the weight of the exoskeleton as well as the annoyance of
having an cumbersome framework attached to their body. The exoskeleton may make it
difficult to interact with physical objects in a natural manner. For instance, it may be
difficult to lie on the floor in certain positions since linkages may be between the user and
the floor. All of these problems make it improbable that the user will become immersed
within a synthetic environment and that a feeling of presence will be obtained.

Ground-based mechanical trackers
typically have six degrees of freedom and
provide the location and orientation of a
single body segment. Thus, joint angle
measurement error is not afactor. Typicaly,
one end of a boom or shaft is either grasped
by the user or attached to a device worn by
user. The other end of the boom is attached to
afixed station by a 3 DOF joint. As the user
moves the boom follows the motion.

Encoders on the joint combined with the

(possibly variable) length of the shaft provide

Figure 1. Exoskeleton tracking of the
the information needed to determine location upper body

and orientation within a synthetic environment. Ground-based mechanical tracking
systems are limited to a range of approximately two meters by the inertia of the boom
assembly. Longer shafts become too cumbersome and unwieldy.[Ref. 21.]

The BOOM (Binocular Omni-Orientation Monitor) is manufactured by FakeSpace
Inc. It consists of a counterbalanced, 6 DOF shaft with a single immersive stereoscopic

visuaization display attached to one end. Shaft encoders produce translational and
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orientation accuracies of 0.16 inch and 0.1 degree respectively. Latency is on the order of
200 nsec. The operating radius is three feet horizontally with a vertical range of 2.5 feet.
[Ref. 22]

Mechanical motion tracking systems arefairly accurate and relatively inexpensive,
but due to severa limitations, they are unsuitable for accurately tracking multiple usersin
a large working volume. Body-based systems are difficult to calibrate and extremely
cumbersome. In order to track over alarge range, they must be combined with some other
type of system. Ground-based systems, while highly accurate, can only track asingle object

over avery limited range.

2. Magnetic Trackers

Magnetic tracking using artificially generated sources is currently by far the most
widely used technology for virtual and augmented motion tracking applications. For a
relatively low cost, it can provide modest but reasonable accuracy with no serious
obstruction or shadowing problems. These systems determine both position and orientation
by using small sensors mounted on the body to sense a set of generated magneticfields. The
sensors contain three mutually perpendicular coils. As the coils are moved through the
magnetic fields, the induced current within them will change. These changes in strength
acrossthe coilsare proportional to the distance of each coil from thefield emitter assembly.
The emitter assembly itself is constructed of three mutually perpendicular coilsthat emit a
magnetic field when a current is applied. Current is sent to these coils in a sequence that
creates three mutually perpendicular fields during each measurement cycle. In al nine
induced currents are generated within the sensor coils and used to calculate a position and
orientation. Each of the three emitted fields creates one induced current in each of the three
sensor coils, thereby allowing measurement of the nine elements of a rotation matrix
associated with each sensor. [Ref. 73.]

At thetime of thiswriting there are two primary manufacturers of magnetic tracking

systems. The fundamental difference between their productsisthe type of current supplied



to the emitter coils. Polhemus, Inc. uses alternating current (AC) to generate the field [Ref.
71.]. Ascension, Inc. utilizes direct current (DC). AC current creates continuously
oscillating magnetic fields [Ref. 4.]. DC systems use pulsed magnetic fields and take
measurements only after the fields have reached a steady state. This technique requires
measurement of the ambient magnetic field so that it can be subtracted from the readings
of the generated fields. Thus in addition to the nine measurements discussed above, three
passive measurements of the constant magnetic field of the earth are required.

The shortcomings of magnetic tracking systems are directly related to the physical
characteristics of magnetic fields. Magnetic fields decrease in power inversely with the
sguare of the range as the distance from the generating source increases. This relationship
[imits these systems to a usable range which is no greater than the size of asmall room. To
simulate a larger working volume, user movement must be scaled or modified in some
other manner [Ref. 65.] As emitter distance increases, position and orientation errors due
to distortions of the generated field increase with the fourth power [Ref. 46.]. Thus, the
accuracy of magnetic systems varies within the working volume. Distortions of the
magnetic field come from severa different sources. Changing magnetic fields produce
eddy currentsin metallic objects. The amplitudes of the eddy currents are proportional to
theinverse cube of the transmitter to metal and receiver to metal separations. [Ref. 46.] The
use of DC isan attempt to alleviate the eddy currents created by the continuously changing
fields of AC systems. Ferromagnetic materials also produce magnetization fields due to
their high permeability. These effects must be added to the distortions due to eddy currents.
In addition to the eddy currents and possibly magnetization fields from metallic objects,
magnetic sensors will also pick up noise from other magnetic fields that are generated
within the environment by electrical devices. Such noise sources may include computer
monitors, fluorescent lighting and any powered-up electrical wiring whichispresent within
the surrounding walls. Even the wires connected to the receivers and transmitters

themselves produce noise which may be significant [Ref. 46.].
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In addition to software filtering, numerous techniques have been used in attempts
to alleviate the error problems associated with magnetic tracking systems. Most are based
upon the assumption that the magnetic characteristics within the working volume will not
change. Function fitting has been attempted, but implementation requires a sacrifice of
local accuracy to obtain better global accuracy [Ref. 44.]. In addition, a functional
representation may not capture all of the details of the various distortions which may be
present or may introduce variations of frequency which are higher than the frequencies of
the error data. Lookup tables based on the reported position have met with only limited
success. Livingston and State were able to reduce position errors by 79% within a two
meter sphere surrounding the field transmitter. Construction of the table required a total
12,801 samplesto obtain 720 valid table entries [Ref. 44.]. The same research determined
that not only were orientation errors position dependent, but were orientation dependent as
well. Since the look up table was based only upon position, correction of orientation errors
was less successful. Creation of even a coarse lookup table which was dependent on
orientation aswell as position would have required taking over 332,826 samples within the
two meter sphere [Ref. 44.].

Improvementsin accuracy have also be made by varying the sampling frequency of
the tracking system relative to the frequencies of the noise sources within the environment.
Nixon et. a. reduced errors by sampling at twice the carrier frequency of the present
electrica power and averaging of adjacent measurements [Ref. 46.]. However, when
multiple noise sources operating at different frequencies were present, it was not possible
to synchronize with all of them simultaneously.

Magnetic trackers are affected by many variables. Exact performance is difficult to
quantify and is mostly application dependent. It has be shown to vary widely from the
claims made by manufacturers. While manufacturers make latency claims on the order of
4 msec, observed delays on the order of 30 msec and may increase even further depending
upon the number of sensors in use and the quality of filtering being performed [Ref. 1.].

Update rate also decreases with the number of sensors due to multiplexing. While
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Figure 2 Electréma;gnetic Orientation Only Tracking of the Human Body
From [Ref. 78.]

manufacturers promise operating ranges of 10 to 15 feet, in most cases the usable range has
been shown to be much less [Ref. 46.]. Orientation accuracies of between 0.5 and 3.0
degrees are advertised. Position accuracies are given as anywhere from 0.3 to 3 inches. In
both cases these values may vary widely depending upon the distance from the transmitter
and the noise sources which are present.[Ref. 46.].

Skopowski did extensive work in tracking the upper body using electromagnetic
motion trackers. Hiswork included construction of ajoint angle based kinematic model of
the upper body. Difficulty in controlling figure motion indicated that the electromagnetic
sensors used lacked sufficient position tracking accuracy. Therefore, the interface software
used only orientation data for computing body joint angles. He concluded that the
electromagnetic trackers lacked sufficient accuracy and registration to enable their useasa
true six degree of freedom tracker in human body applications and caled for the
investigation of new tracking technologies to support the insertion of dismounted infantry

into virtual environments [Ref. 78.].



The susceptibility of magnetic tracking systems to interference makes them
unsuitable for robust synthetic reality applications. The presence of any magnetic materials
or power sources within or near the working volume can severely degrade performance.
Perhaps even more critical is the limited range of these devices. This limitation makes it
nearly impossible to track more than one user in all but very specialized applications and

restricts the size of the working volume to that of a small room.

3. Optical Sensing

Optical sensing encompasses a large and varying collection of technologies. More
research is underway in this area than any other motion tracking technology. The cost and
the performance of the different optical sensing technologies vary widely. Many are not
capable of capturing motion dataand processing it in real-time. The commonality between
them is the dependence upon the sensing of some type of light. The light involved may or
may not be visibleto the eye. It may also be the focused light of alaser. It may be generated
by a source under the control of the tracking system or it may be passive. Detectors may
range from ordinary video cameras to lateral-effect diodes. In any case, optical systems
suffer from occlusion problems whenever a required light path is blocked. Interference
from other light sources may also be a problem. Lighting conditions must be controlled in
order for the camera to consistently see objects in the environment. Depending upon the
type of light in use, there may be severe range limitations.

Here, optical tracking systems are separated into three basic categories. Pattern
recognition systems sense an artificial pattern of lights and use this information to
determine position and/or orientation. Image-based systems determine position by using
multiple cameras to track predetermined points on moving objects within a working
volume. Structured light and laser systems have shown some promise, but little work
appears to be under way to make this technology practical. None have been commercially
marketed.
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a. Pattern Recognition Systems

Pattern recognition systems can be outside-in or inside-out. In outside-in
systems, the sensors (cameras in the case of optical systems) are fixed and the emitters are
mobile. The sensors look into the working volume. Inside-out systems use sensors which
are mounted on mobile objects and the emitters are fixed. These systems require elaborate
preparation of the working volume. In both cases, position and orientation are calculated
by viewing points of known intensity in known positions. Outside-in systems have a slight
advantage in accuracy, since a small movement of the sensor will cause relatively large
shifts in the apparent positions of emitters in view. The emitters themselves are usually
infrared LEDs.

The HiBall tracker developed at UNC Chapel Hill is a classic inside-out
system designed for head tracking. It utilizes a large number of ceiling-mounted infrared
LEDs as emitters. The HiBall tracker or sensor is dlightly larger than agolf ball. It contains
six lenses and six photodiodes which are arranged so that each diode can view LEDs
through several of the lenses. Position and orientation are determined by sequentially
turning the LEDs in the ceiling on and off until it is determined which ones are in view of
each of the photodiodes. Refinements over ten years of research and augmentation with
inertial sensors has produced excellent performance. Position is accurate to 0.5 mm and
orientation is resolved to within 0.02 degrees. The claimed update rate is greater than 2000
Hz with a latency of approximately 1 msec. [Ref. 93.]. The primary drawbacks of this
implementation are its dependence on being under a specialy prepared ceiling and its
inability to track in all orientations. Current research aims at attempting to alleviate some
of these problems and achieve passive optical sensing in anatural environment. [Ref. 93.]

The Honeywell LED array helmet tracker is a outside-in system designed
for cockpit use. It uses an array with 4 LEDs mounted on a helmet. The LEDs are
sequentially energized, and tracked by an infrared camera. The vector to each emitter is
calculated using camera optical parameters and the known image of the source. From the

four vectors, helmet orientation may be determined. [Ref. 25.]



b. I mage Based Systems

Image based systems attempt to determine position through the use of
multiple 2D images of the working volume. Stereometric techniques correlate common
tracking points on the tracked objects in each image and use this information along with
knowledge concerning the relationship between each of theimages and camera parameters
to calculate position. In some cases a single camera may be used and the process is based
upon a sequence of images taken a different time instants. The tracking points are most
often fiducial markers which are attached to the body being tracked. In order to calculate
orientation, three noncollinear points on the each rigid body must be tracked. This process
is prone to errors due to position inaccuracies, repeatability problems and non-
simultaneous measurements [Ref. 66.]. The markers themselves may be either passive
(retroreflective) or active (light-emitting diodes). A great deal of research effort is currently
being expended on systems which are able to track natural objectsin real-time without the
add of markers.

All of these systemsvary in the number of objectsthat can betracked aswell
asthe number of camerasthat must be used. For many of the systems, the cost is quite high.
In all cases there must be a compromise concerning lens focal length. A long focal length
lens makes possible greater resolution over a smaller area than a short focal length lens.
However, along focal length has a smaller viewing areawhich will in turn reduce the size
of the working volume unless additional cameras are added. Short focal lengths permit a
larger working area, but at reduced accuracy. No matter how this compromise is resolved,
these systems require that the entire working volume be within the view of several
expensive cameras and thus even systems which might be capable of tracking natural
objects will suffer from many of the limitations of sourced systems. All of these systems
could be categorized asinside-out.

Passive marker measurement systems such as Vicon [Ref. 90.], HIRES 3D
[Ref. 32.], and Peak Motus [Ref. 70.] use light sources placed very near each camera to
generate light. This generated light is returned from the highly reflective markers. During
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the post-processing of the motion capture data, an operator of the system must assist with
marker identification. The Peak Motus system has also been used without markers for
analysis of athletic performancesin a manual video acquisition mode. Higher end systems
allow aframerate of 60 Hz. Even for asmall area, up to seven cameras may be required to
achieve proper triangulation of the markers.

Though reflective marker research continues [Ref. 87.], in general, only
active marker systems are currently able to produce the information necessary to drive an
avatar in real-time. The advantage of the active marker approach isthat theidentity of each
marker and thus the corresponding anatomical location is known immediately because the
LEDs are sequentially pulsed by the control and data acquisition hardware. Data reduction
is therefore greatly speeded up and a correspondence between multiple images can be
found more quickly. “Phantom marker artifact” problems may be encountered due to the
reflection of LED pulses from testing surfaces such as the floor. The range at which the
LEDs may be detected is usually limited to less than eight meters.

Commercial active marker systems based on light-emitting diodes include
Selspot 11 (Selspot Systems Ltd., Southfield, Michigan), OPTOTRAK (Northern Digital
Inc., Waterloo, Ontario, Canada) and CODA (Charmwood Dynamics Ltd., Leicestershire,
England). The Selspot Il 3-dimensional motion measurement system allows the user to
collect real-time 3D coordinates of up to 36 infrared LEDs attached to the test subject. It
also calculates angle, acceleration, and moments. Update rates for active marker systems
are extremely high.

Reality fusion has released the GameCam system which is the first image
based system motion capture system intended for use by the general public. In this system,
the user must track their own location and position by viewing themselves on the screen.
This low cost system uses a single standard PC camera to capture the motion of the user.
Any motion information received from the camera that corresponds to an applicable

portion of the screen image will alter the game environment. [Ref. 74.]



Cameratracking of natural objectswithout the aid of markersis considered
by many researchers to be the final solution to human motion tracking challenges. It is
largely based on computer vision techniques. It isfelt that eliminating the need for fiducial
markers will allow greater mobility and a deeper sense of immersion. To make this
approach work it will still be necessary to position numerous expensive cameras
throughout the working volume. A varied array of algorithms are being used to register
objects in the video image or images captured by the camera with synthetic environment
models. Some of the more common algorithms include mesh-based modeling, neurofuzzy
classification, simple shape fitting, feature extraction based tracking and shape-volume
approximation. Most of these algorithms are computationally demanding and are thus
unable to deliver high quality motion capture data in real-time using current processing
power. Often, several algorithms can be used in conjunction with one another. M esh-based
modeling breaks the video image into patches. The vertices of the patches can then be used
asthe nodes of amesh. To register an object in the scene, a correspondence must be found
between a given mesh model and the mesh which was created using the video image.
Neurofuzzy classification uses a neural network which has been trained to recognize
objects within the video image. Once an object has been recognized, knowledge of the
camera parameters can be used to derive the position of the object. The basic premise of
feature extraction and matching is that accurate 2D tracking of some basic distinctive
features of an object in asequence of images can lead to 3D tracking of the object. The most
commonly used features are lines, points and curves. This technique is faster than more
complicated methods, but is sensitive to image noise and occlusion. Simple shape fitting
attemptsto fit polyhedral, cylindrical or spherical modelsto candidate objectsin the scene.
Surface-volume approximation is similar to simple shape fitting and is usually combined

with another technique such as mesh-based modeling.



C. Structured Light and Laser Systems

Structured light systems use lasers or beamed light to create aplane of light
that is swept across the image. Some systems use alaser to scan points, the entire scene, or
randomly to determine positions [Ref. 62.]. These systems sense the person, not just joints
or points, thus, a person's body can be a virtua icon, rather than being artificially created
from limited information. This is primarily a mapping technique, and is too slow for
position tracking.

Laser Radar or Ladar measures the time of flight of laser light to an object
and back. This gives distance information Three such measurements can be used to
triangul ate the position. If the angle of the laser beam isknown, then only one measurement
can give position. These systems are capable of providing very accurate distance
information but resolution may be poor. Ladar is more appropriate for long distance
measurements though the diffuse reflections may only have one sixth of the strength of the
original beam. [Ref. 62.]

Laser Interferometers require retroreflectors or mirrors be attached to the
tracked object. Laser light is directed to the reflector and the phase of the reflection is
compared to the original light. An interference pattern is created and incremental distance
information is found. Only incremental distance changes in distance are measured, so a
position correction must be made to maintain registration. The correction may be found
using laser radar. The orientations of the object be tracked are limited to those in which the
reflector is accessible to the laser beam. This method is very accurate and precise.
However, it is probably not suitable for measuring humans.

Structured light and laser systems are al susceptible to shadowing and
occlusion problems. In general, they are quite complex and expensive. The measurement
of orientation increases system complexity even further. They are more appropriate for

mapping applications than dynamic tracking of human body motion.
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4. Acoustic Trackers

Acoustic or ultrasonic trackers are an inexpensive alternative to magnetic trackers.
They provide modest accuracies and update rates. Both outside-in and inside-out
implementations are possible. Outside-in systems must divide the maximum update rate by
the number of emitters being tracked. The number of tracked objects is not limited in
inside-out systems.

The physics of sound limit the accuracy, update rate and range of acoustic tracking
systems. Ranges are longer than that of magnetic trackers and magnetic interference is not
a problem. However, a clear line of sight must be maintained. Thus, obstruction and
shadowing can present difficulties [Ref. 21.]. Latency varies with distance due to the
relatively slow speed of sound. Most current systems utilize 40 kHz tone pulses. Sound in
thisfrequency band can be severely affected by noise from metallic objects such asjingling
keys. Shorter wavelengths more accurately resolve distances, but quickly attenuate. In
addition, high frequency omnidirectional radiators are expensive to implement and require
more power.

Ultrasonic tracking systems can determine position through either time-of-flight
and triangulation or phase-coherence. Phase-coherence trackers determine distance by
measuring the difference in phase of a reference signal and an emitted signal detected by
sensors. This difference is used to calculate changes in positions. Since this is an
incremental motion technique, initial location must be determined by some other means
and drift may be a problem. One of the mgor advantages of phase-coherence systemsis
higher datarates which allow filtering. Both types of systems can be adversely affected by

echoes and reflections of sound waves.

5. Inertial and Magnetic Tracking
Though it is based upon well established algorithms, inertial and magnetic (MARG

sensor) tracking is a relative newcomer to the motion tracking arena. It has been used to

determine head orientation in virtual and augmented reality applications, but it has not yet



found use in full body tracking applications. Inertia sensing is also finding expanded
usefulness as amethod of augmenting other motion tracking technologies. Practical inertial
tracking is made possible by advances in miniaturized and micromachined sensor
technologies, particularly in silicon accelerometers and rate sensors. These advances have
been driven by the rapidly developing market for low cost automotive vehicle navigation
and control systems. Unlike other sensor technologies, there is no inherent latency
associated with inertial sensing. All delays are due to data transmission and processing.
Thus, an orientation that is calculated using inertial sensor data is likely to be extremely
accurate and have very low latency.

A naive approach to inertial orientation tracking would simply involve a single
integration of angular rate data to determine orientation. However, this solution, which is
found using only one type of sensor, would be prone to drift over time due to the buildup
of small bias and drift errors. In order to avoid drift, inertial tracking systems make use of
other complementary sensorsto continuously correct the orientation estimate. Commonly,
these sensors include an inclinometer or accelerometers to sense the vertical and a set of
magnetometers to sense the direction of the local magnetic field. In order to track all
orientations, there must be a separate accel erometer, rate sensor and magnetometer for each
of the three coordinate axes of arigid-body.

Theoretically, it is possible to determine position as well as orientation using
inertial sensors. This is done on a daily basis by the inertial navigation systems of
submarines and other platforms which must navigate without the aid of outside references.
This dead reckoning performance is made possible through the use of very expensive and
large sensors. Such dead reckoning is not possible with low grade inertial sensors for
anything longer than relatively short time periods [Ref. 7.][Ref. 26.]. Without outside
reference, position estimates based on inexpensive sensorswill drift in amanner similar to
orientation estimates based only on angular rate sensors.

Motion tracking of a two-joint, two-axis arm model using accelerometers and

miniature gyroscopes was demonstrated Sakaguchi et al. [Ref. 77.] Thisresearch attempted
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to take advantage on the strengths of both sensor types and compensate for their
weaknesses in a complementary manner. The method proposed does not use Euler
integration of angular velocity data or complementary filter algorithms. Rotational and
centrifugal accelerations are cal culated based upon the kinematic rel ationships between the
sensors and the links and the links with each other. The model is basically two-dimensional
and no provisions are made to compensate for drift in the yaw axis. “Fingertip” position
stated accuracy is 0.061mm.

Fuchs presented the first inertial system for head tracking applications [Ref. 29.].
This system utilized a fluid pendulum and three solid state piezsoelectric angular rate
sensors. The initial system did not include a compass or magnetometers and thus drifted
about the vertical axis. Subsequent systems include three orthogonal solid-state rate gyros,
atwo-axis fluid inclinometer and a two-axis fluxgate compass [Ref. 27.]. Intersense, Inc.
was started as a result of this research and continues to produce inertial tracking devices
designed for head tracking applications. Most the systems currently marketed are hybrids
which use ultrasonic range-finding to determine or correct position. Advertised
performance of the 1S600 includes an angular accuracy of 0.25 degrees, translational
accuracy of 0.25 inches and an update rate of up to 150 Hz. Though the response and
accuracy of the systems is excellent, the use of Euler angles to internaly represent
orientation makes possible singularities in some orientations [Ref. 27.]. Sensor data is
processed by a complementary separate-bias Kalman filter which requires periods of “ till
time” to correct for rate sensor drift. [Ref. 27.]. For most normal head tracking applications
this is not a problem. However, in high acceleration applications requiring orientation
tracking in all attitudes such limitations are not desirable. While InterSense is alleged to be
developing and marketing a full body tracking system, the author is unaware of any
research literature documenting such a system.

Henault researched software necessary to support inertial sensors capable of
tracking al orientations. His work included the development of a quaternion attitude filter.

The filter was tested with a computer simulated inertial tracker, [Ref. 35.]. Use of
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guaternions in the filter allowed objects to be tracked in all orientations and avoids the
singularities associated with Euler angle based filters. Another important feature of the
filter is reduced computationa complexity since the incorporated filter uses no

trigonometric functions.

6. RF Positioning

RF positioning has yet to be applied to the body tracking problem. Radio Frequency
(RF) position systems are very fast and long range by their nature. Such systems have been
developed for ships, planes, missiles and various civilian applications such as Long Range
Navigation (Loran) and the Global Positioning System (GPS) [Ref. 45.]. All of these
systems are designed to be used at extreme distances. In the past, they could only be used
in such large-scale applications dueto system errorsin signal processing, [Ref. 13.]. Recent
advances in RF systems technology however, make possible tranglational three degree of

freedom tracking accuracy of afew millimeters at ranges of up to 100 meters, [Ref. 24.].

The speed of aradio signal is 2.99792458 x 108 meters per second. When a signal
istransmitted, it takes afinite amount of time to travel from pointx to pointy. If thereceiver
knows the exact time the signal is transmitted and received, it can determine the amount of
time the radio signal took to travel. Thus delta-time multiplied by the speed of the radio
signa equals the range between the two points in meters. Using this method, a receiver-
equipped object can determine its position through triangulation based upon its distance
from several transmitterswith known locations. Thisisthe method used by GPS, [Ref. 45.].
Notice in this method that the receiver must accurately measure the exact times of
transmi ssion and reception with adequate temporal resolution. Alternatively, the difference
in the time of arrival of asingle signal at several locations can also be used to triangulate
the position of an object equipped with a transmitter, [Ref. 24.]. This method does not
reguire exact time synchronization between the receiver and transmitters.

Radio frequency devices have unique characteristics with both advantages and

disadvantages. Some advantages important to position tracking are that radio frequencies



can penetrate nonmetallic objects, such as walls and the human body. They are resistant to
masking (hiding), easy to construct, and are scalable to both large and small areas. In a
closed environment however, radio frequency device performance can be degraded due to
reflections off surfaces, both metallic and nonmetallic, and is subject to attenuation when
passing through objects, [Ref. 13].

Spread-spectrum RF signals exhibit two characteristics important to positioning in
a virtual environment. The first is excellent ranging ability, which alows accurate
measurement of distance between two points, based on the phase difference in the pseudo
noise (PN) code sequences of the transmitter and receiver. The second is code division
multiplexing (CDM) which allows multiple transmitter-receiver pairs to compatibly share
the same frequency at the sametime, [Ref. 13].

RF position tracking can be scaled to an area of any size. The accuracy of the system
would be dependent upon the frequency, coding and signal processing implementation
rather than the size of thearea. A minimal system for 3 DOF tracking inaV E would require
four stations placed at known locations within the areain which the tracking isto take place
and a unit attached to the body to be tracked. The fixed location stations could be
transmitters and the tracked unit a receiver as with GPS, or the roles could be reversed as
described in [Ref. 24.]. In the former configuration, processors on the object itself could
estimate the position of the object. In the latter configuration, position calculations would
be made by a central processor in communication with each of the fixed location stations.

Either configuration would be capable of producing highly accurate location data.

7. Hybrid Tracking Systems

Each type of tracking technology hasits own set of strengths and weaknesses. The
ultimate future of motion tracking amost certainly lies in hybrid systems. Many systems
use onetype of technology for sensing orientation changes and another for sensing position.
Some merely use two separate technologies and choose whatever estimate seemsto be the

most accurate at a particular time instant. The best systems take data from multiple sensor
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types and use filtering algorithms to combine them and arrive at some type of optimal
estimate. The inability of micromachined inertial sensor systems to calculate position for
any extensive period of time in practical applications necessitates that any 6 DOF inertial
system be a hybrid. The fact that inertial data lends itself to prediction through the use of
motion derivatives has resulted in the use of inertial sensorsin numerous efforts to combat
latency problems.

In [Ref. 5.], Azuma demonstrates that predicting future head location using three
rate gyroscopes and three linear accelerometers is an effective approach for significantly
reducing dynamic errors in an augmented reality head tracking system. In this study,
prediction caused dynamic accuracy to increase by factors of 5to 10. Linear Kalman filters
are used to estimate and predict translation terms and an Extended Kalman Filter (EKF) is
used to estimate and predict orientation terms. Welch continued predictivework at UNC in
[Ref. 94.], using a single-constraint-at-a-time (SCAAT) Kalman filter. Though a
guaternion representation of orientation is used in the UNC research described above, in
each case the orientation is converted to an Euler angle representation.

[Ref. 26.] describes a hybrid outside-in inertial/acoustic system called the
constellation. This system uses an inertial navigation system which is aided by ultrasonic
time-of-flight range measurements. The inertial subsystem determines position through
double integration of triaxial accelerometer data. The ultrasonic ranging system uses a
“constellation” of ceiling mounted acoustic beaconsin amanner very similar to the optical
HiBall head tracking system developed at the University of North Carolina, Chapel Hill.
However, the ultrasonic system only calculates position. It does not calculate orientation.
The stated reasons for using acoustic sensing as opposed to optical are cost, weight, and
complexity. As with the UNC system, an extended Kalman filter is used to combine all
sensor data and calculate an optimal position and orientation estimate. Acoustic range

measurements are also individually processed using a SCAAT Kaman filter.



8. Other Technologies

Suryanarayanan and Reddy investigate the use of surface electromyographic
(EMG) signdls for tracking human movements for virtual environment application and
control of telemanipulators [Ref. 72.]. This study concentrates on determining elbow-joint
flexion and extension and using this information to drive an anthropomorphic
telemanipulator. Accuracy is based on comparisons between the actual elbow joint angle
and the angle produced by the telemanipulator. Use of EMG is difficult due to the nature
of the EMG signals and large variations from one user to another. Signals vary based on
both the speed of motion and the angle of motion. Limb loading and the plane of motion
relative to the down vector will also affect the EMG signal. [Ref. 72.] utilizes anonlinear,
adaptive, intelligent system to track human arm movements. The system attempts to use an
artificial neural network with fuzzy logic to compute an adaptive gain that compensates for
the variation in the EMG signals due to speed of flexion. Only data from the biceps was
used to compute joint angle. RMS joint angles errors where less than 20% during testing.
Computation delays exceeded 150 msec.

Severa technologies have produced good results in hand tracking applications.
Most gloves combine a single 3D tracker to track hand position and orientation and
multiple joint sensors for finger position. The Dataglove by VPL Research, measures
bending in the proximal joints based on the attenuation of alight signal in each of two fiber
optic strands sewn into the glove along the fingers and thumb. Sampling rateis 30 or 60 Hz
[Ref. 67.]. The Cybergloveby Virtual Technologiesincludes either 18 or 22 resistive-strip
sensorsfor finger bend and abduction, and thumb rotation[Ref. 67.]. Unlike the Dataglove,
the mapping between the sensors and finger positions is linear. The strip sensors are more
natural and comfortableto wear. Both of these glove technol ogies could be extended to the
entire body through the use of a body suit. However, calibration for different users would

most likely be difficult.
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C. SUMMARY

This chapter presents a brief survey of technologies which are currently being
researched or commercially marketed. The general limitations and performance
capabilities of the various motion capture technologies are examined. None is capable of
fully meeting the need for a natural and intuitive interface. In genera, limited range,
shadowing problems and susceptibility to interference make currently available systems
unfit for tracking multiple usersin the samework space. In addition, most sourced tracking
systems fall short in categories of robustness and sociability.

Theideal tracking system would receive high marksin all measurement categories.
It should be capable of accurately tracking multiple users in alarge working volume with
minimal lag. There should be few errors due to noise sources within the working volume
or due to collateral effects associated with the tracking of multiple objects or users. The
update rate should be adequate to capture the entire range of human motion. The ideal

tracker should be not only be untethered, but also unobtrusive.
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I11. REPRESENTATION OF HUMAN BODY MOTION AND
MODELING

A. INTRODUCTION

The human body can be modeled as a set of links or limb segments arranged in a
tree-like structure. Individual limb segments can be treated as rigid bodies. Specifying the
posture of the model involves descriptions of the orientation and position of the individual
segments. Specification of the nature of the relationships between the links in the structure
will determine whether the positions and orientations of the segments are described
individually or are specified relative to one another. The formalisms chosen will have a
bearing upon the ability to represent all orientations, computational efficiently, storage
requirements, and transmission bandwidth requirements when operating within a
networked synthetic environment architecture. In human body tracking applications, the
type and quality of sensor input being used to drive the animation of the human model
should also be considered.

This chapter discusses alternative methods of representing the orientation of the
individual links of a human model and relating the links to one another. Possible methods
of representing orientation considered include joint angles, Euler angles, and quaternions.
Both ssmple and complex link relations and structures are examined and compared.
Kinematic structures based upon homogenous transform matrices and quaternion/vector

pairs are also examined.

B. RIGID BODY ORIENTATION REPRESENTATION

A “rigid body” isan idealization of abody with volume and mass which has a shape
that cannot be changed. That is, such bodies are solid and completely inelastic. Numerous
methods are available for expressing the orientation of a rigid body. Two of the more
common methods are Euler angles and quaternions. Other methods of representation
include direction cosines and vector-angle pairs. Direction cosines represent an orientation

using the cosines of the angles an appropriate vector makes with the standard orthonormal



basis for three space. The nine direction cosines associated with three unit vectors
correspond to the nine elements of arotation matrix. Vector-angle pairs specify an avector
and an angle of rotation about that vector. These are similar to a unit quaternion. Each
method has its own set of advantages and disadvantages. Only Euler angle and quaternion
representations are discussed here. More detailed discussions can befound in [Ref. 17.] and
[Ref. 42]

In order to represent the orientation of arigid body, it is conventional to choose a
coordinate system attached to an appropriate inertial frame, and then express all vectorsin
component form relative to these coordinates. A commonly used coordinate system is the
local “flat Earth” system with an arbitrarily selected origin on the surface of the Earth with
coordinate axesx, y, and zdirected in thelocal north, east and down directions respectively.
To specify orientation, it is a'so necessary, for each rigid body, to specify a “body fixed”
coordinate system or frame which is attached to the rigid body. Thisis also an xyz system
with x conventionally “out the nose,” y “out the right side,” and z down or “out the belly.”
(The reader may find it helpful to visualize an aircraft with positive axes pointing out the
nose, right wing and bottom of the fuselage.) The superscript or subscript “E” ismost often
used to designate Earth coordinates, while® B” istypically used to signify body coordinates.
The description of the orientation of arigid body expresses the relationship between these

two coordinate systems.

1. Euler Angles

Euler angles represent the orientation of a rigid-body using three rotations about
specified axes. The axes may be orthogonal body fixed, orthogonal earth-fixed, or gimbal
axes. Thus, when using Euler Angles, it isimportant that agreement be reached regarding
thetype of axesaswell asthe ordering of therotations. If the order of rotationsisfirst about
a north axis, then about an east axis, and finally about a down axis, the associated angles

are denoted by the reserved words “roll,” “elevation,” and “azimuth” respectively. When



using the above set of “Euler” angles, there are also reserved symbols for each angle;
namely, roll is designated by | , elevation by g, and azimuth by y . [Ref. 52.]

If the temporal order of rotations is reversed, body-axis rotations yield exactly the
same orientation as Earth axis rotations. Specificaly, starting with a given body in its
reference orientation, if it isfirst rotated through the azimuth angle about its belly axis, then
through elevation about its right side axis, and finally through the roll angle about its nose
axis, thefinal orientation of the body will be exactly the same asif these rotations had been
performed in the reverse order about the north, east and down axes of an earth fixed
coordinate frame. [Ref. 52.]

Gimbal axes provide another way of defining Euler angles which helps to resolve
the apparent temporal conflict. This approach is derived from the terminology and practice
of naval gunnery and field artillery. To aim an artillery piece, it is necessary to tilt the gun
barrel upward through an “elevation” angle so that a projectile will travel the desired
distance when the gun is fired. It is also necessary to rotate the gun carriage to a proper
“azimuth” angle so it points toward the target. Finally, in most modern guns, when the
projectile is fired, the “rifling” in the gun tube imparts a “roll rate” (or “spin”) to the
projectile to stabilize its flight toward a target. If the azimuth, elevation, and roll axes all
intersect in a common point, then the mechanism that moves the gun is called a “gimbal”
system. Thus, gimbal systems provide a mechanical means for achieving rotations. In this
casethe“temporal” order of the rotations does not matter. That is, thegunis*“aimed” at the

same point regardless of what temporal order the rotations are applied.[Ref. 51.]

a. Euler Angle Rotation

The position of apoint in space can be described using athree dimensional
point vector. If arigid body is described in terms of point vectors, it can be rotated or

oriented by rotating each vector individually. This may be completed by multiplying an
appropriate rotation matrix times the point vectors. The rotated coordinates, V=[x y Z]7,

of avector v=[xyZ" by ananglej about thex axis is described by [Ref. 17.]
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Likewise, rotations of q (elevation) and y (azimuth) about the y and z axes

respectively can be accomplished by means of the following multiplications.

cosg O sing X
H =l o0 1 0 F = [rot(y, q)lH (3.2)
z —sing 0 cosq|LZ] z
: cosy —siny Of[X]
F] = |siny cosy OF = [fOI(Zy)]ﬂ (3.3
z 0 0 1flz] zZ

Thus, the relationship between the earth fixed coordinate system and the body fixed

coordinate system can be expressed as a single rotation matrix R.

v = [rot(z y)]lrot(y, a)] [rot(xj )]%v (34)

% =R% (3.5)

siny cosq cosy cosj +sSiny singsinj cosy sinj + siny singcosj
—dnq cosqgsinj €0S(COos;j

COSy COSQ COSy Singsinj —siny cosj Ccosy singcosj + siny sinj ]

It should be noted that this relationship applies regardless of the physical means by which
the Euler angle rotations have been achieved. Rotation of the point vector v in Eq. (3.5)

requires nine scalar multiplications and six additions. There are six trigometric functions.

b. Transforming Body Rates To Euler Rates

Unlikelinear vel ocities which may beintegrated to obtain position, the body
rates p, g, and r about the body X, y, and z axes cannot be integrated to obtain Euler angles.
Thatis

(.ay)* @gp g radt (3.6)

Thiswill be proved in the following paragraphs.

The angular rate of arigid body in earth coordinates, Ew, is given by
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wherej, g, and y are Euler rates measured about roll, elevation and azimuth Euler axes

respectively. Eq. (3.8) below expresses angular rates about body-fixed axes in terms of

angular rates about earth-fixed axes.

=rR" fw=R" fw (3.8)

By the inverse law of transposed matrices and substitution of Eg. (3.7) into Eqg. (3.8).

Pw= [rot(x )] 'Troty @)1'Irot(z y )l "w=[rot(x )1 "[rot(y, )] 'rot(z y)I ™ “w (3.9
T T T 0 T T 0 T J

= [rot(xj)] [rot(y, a)] [rotzy)] |o|+[rot(x )] [rot(y. a)] |g| +[rot(xi)] [o| ~ (3.10)
y 0 0

From the first term of Eq. (3.10), the rotational rate about an earth fixed down axis

in body coordinatesis given by

5 . T T 0 T 0 —sng
y =[rot(xj)] [roty. )] [rot(zy)] |o| = R |0o| = Y |sinj cosq (3.112)
y

y COSj cosq
In a similar manner, the following are obtained from the second and third terms of Eq.

(3.10) respectively.

0 —sn;

B, N
f =[rot(x,j )l o] =i |o (313)
0 0

To obtain expressions of body ratesin terms of Euler Rates and angles, Eqg. (3.11),
Eqg. (3.10) and Eq. (3.11) are combined to produce

B_-’ T T 0 . 0
G = [rot(xj )] Trot(y, @)1 |g| = d]cosj (312
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p=j-ysinq (3.19)

q = deosj +y sinj cosq (3.15)

r = —gsnj +y cosj cosq (3.16)

In order to solvefor |, q,and y intermsof p, g, and r, it should be noted that Eq.

(3.15) and Eq. (3.16) involveonly q, and y . Thus, multiplying Eg. (3.15) by cosj and Eq.
(3.16) by -sinj and adding produces the result

q = qcosj —rsinj (3.17)

Substituting this result into Eqg. (3.16) yields:
sinj. rcosj _

Y = Goer * Goeg = AS0GSIN + rsecqoos (3.18)

Finally, using this result in Eq. (3.14),
j = p+ysing = p+qtangsinj +r tangcosj (3.19
In matrix form, these results can be rewritten as:

f 1 tanqsinj tanqcosj ||p p
q = |0 cosj —sinj al = Tlq (3'20)
y r

0 secqsinj secqcosj ||r
wheresec g = 1/ cosg. Evidently, this matrix issingular for q = +90° . [Ref. 16.]

C. Euler Angle Singularities

When the nose unit vector of arigid body points straight up (or down), the
roll and azimuth gimbal axes are collinear. This means that neither roll or azimuth angles
are uniquely defined, but rather, only their difference (nose up) or sum (nose down) can be
specified uniquely [Ref. 51.]. This problem isalso manifested in an even more serious way
with respect to Euler angle rates since, the body rate to Euler rate transformation matrix (T
in Eqg. (3.20)) issingular for thisorientation (q = +90°). Obviously, this problem only arises

for rigid bodies which are capable of assuming avertical orientation.



2. Quaternions

Quaternions are an extension of complex numbers designed to define a four-
dimensiona volume using three “imaginary” parts and one “rea” part. The imaginary
portion of a quaternion is often termed the “vector” part. The real part of a quaternion is
sometimes called the “scalar” part. Quaternions are commonly represented using three

different notations.

(1) Linear combination of four components:

q=w+xi+yj+zk (3.22)
wherel, j, and k denote the standard orthonormal basis for three space.

(2) Four dimensional vector:

q=(wxyz) (3.22)
(3) Scalar with avector imaginary part:

a=(wVv) (3.23)

It isalso possible to write a quaternion as the sum of two four dimensional vectors.

For a quaternion g, the vector Re(qg) contains the scalar or real part of gq. Only the first
element is nonzero. The vector Ve(q) contains the vector or imaginary part of the
quaternion. The first element is zero and the last three elements express a vector in

component form. Thus,

w
q = Re(q) + Ve(q) = 8 + (3.29)
0

N < X O

Intuitively, the three imaginary parts describe a vector and the real part expresses

an angle of rotation about that vector. The imaginary parts have the following properties

i*i=i2=-1 (3.25)
j*ji=j2=-1 (3.26)
k* k=K =-1 (3.27)



and

ij=k=-ji (3.28)

jk=i="-k (3.29)

ki =j=-ik (3.30)
a. Quaternion Operations

Under the operations of addition and multiplication, quaternions satisfy all

of the axioms of afield except the commutative law. Let s be a scalar and let

0y = Wy + X0 +yqj +2,K Oy, = W, + X0 +Y,j + 2,k (3.31)
The following operations are defined for quaternions.
Equality
Two quaternions are equa if and only if they have exactly the same

components. That is g, and g, are equal if and only if

Wy =W 3.32)

1= Wz (

X1 = Xo (3.33)

Y1=Y2 (3.34)

Z,=2 3.35)
1= % (

Addition
The sum of two quaternionsis defined in the same manner as normal vector

addition by adding corresponding components.

gy +dz = ((Wy+Wo) (X + %) (Y1 + ¥2)(21 + 2)) (3.36)
Each quaternion g has a negative or additive inverse denoted by -q, in which each

component is the negative of the corresponding component of q.



Scalar Multiplication

Scalar multiplication of aquaternion is commutative and is again defined in
the same manner as that of a vector in four space. Each component of the quaternion is

simply multiplied by the scalar.

sq = (sw, sv) (3.37)

Quaternion Multiplication

The product associated with the multiplication of two quaternionsisitself a

guaternion.

Gy = (Wy+ X0 +Y,j+2Z,K) (W + X0 + Y] +2,K) (3.38)
Using (3.25) through (3.30) and the distributive and commutative properties

of scalar multiplication, (3.38) becomes

0109, = (WqWy — X Xo — V1Yo — 21 25)
+i(x W, + WX, —2,Y, +Y,2,)
(Y W, + 2%, + WY, —X,Z,)
+ K(ZyWo — Y1 Xo + X1 Yo + Wy 25) (3.39)
Theresult given in (3.39) can also accomplished by scalar multiplication of
the imaginary vectors, taking the dot products of the imaginary vectors (produces a scalar)

and taking the cross product of the imaginary vectors (produces a vector). That is,

Ayly = (WyVg) (WoVy) = (Wy Wy — Vg 3V WiV, + WoVy + V7 V) (3.40)
Evaluation of Eqg. (3.39) or Eqg. (3.40) requiresatotal of 28 scalar operations
(16 multipliesand 12 additions). Though quaternion multiplication is associative, the cross-

product makes the operation non-commutative.

b. Quaternion Forms

Quaternion Conjugate

Let g = (w, v), then the quaternion conjugate of q is
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q = (w,—-v) (3.41)
It can be shown that the conjugate of the product of the two quaternions is equal to the

product of the individual quaternion conjugatesin reverse order. That is

(@,0) = 8,0, (3.42)
The sum of any quaternion and its conjugate will be the scalar quantity 2w.
Norm
The norm of aquaternion is sometimes called thelength or magnitude of the

quaternion. Let g = (w xy 2), then the norm of g denoted N(q) is

N(a) = Jag = W +x*+y*+ 7 (3.43)
This definition is the same as the for the length of afour dimensional vector.

Normalized unit quaternion

If a quaternion has a norm of unity, each of its components must have an

absolute value less than or equal to one. Such quaternions are called unit or normalized

guaternions.
=9 344
qnormahzed N(q) ( )
Quaternion (multiplicative) inverse
In general, the multiplicative inverse of aquaternionqis given by
-1__9 _ ¢
qt= =4 3.45
N(q) ad (349
Since N(g) = 1 for a unit quaternion, the inverse of a unit quaternion is
smply g.

C. Quaternion Transformation Between Coordinate Frames

It is known that the orientation of arigid body can always be described as
arotation (f ) about asingleinclined axis (V). If theaxis (V) isconstrained to unit magnitude,

the quaternion (q,) representing this orientation is
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g, = Fosk, vsink0 (3.46)
Evidently,

At = lof* = 1 (347)
The product of two unit quaternionsis also of unit magnitude. The product

0,9, IS a quaternion rotation from the orientation described by g; to a cumulative
orientation of g, and g,. In general, “earth coordinate” rotations multiply from the left and

“body coordinate” rotations from the right. [Ref. 53.]

Any scalar can be represented as a quaternion.

q=(w000) (3.48)
Any three dimensional point vector p = (X y 2) "can be represented as the quaternion with

the real part set to zero.

p=(0xy2) (3.49)

The rotation of avector, p, by aquaternion q is defined as

Protated = qpq_l (350)

If g isof unit magnitude such that

q= g%osg,usin gg (3.51)
then
Protated = qpq (352)

where u is a unit vector about which the vector p is rotated through an angle g. There are
no singularities and only two trigometric functionsinvolved. 56 scalar operations or twice

the number needed to evaluate EqQ. (3.40) are required to evaluate Eq. (3.52).



d. Unit Quaternions In Positive Real Form
For any given orientation, there are two unit quaternions which may be used
to represent it. The unit quaternions

q, = q, = -q; = — (353)

N < X S

both represent the same orientation. To eliminate this ambiguity and insure a unique
solution for an orientation, the angle of rotation, a, may be restricted to -p/2< a < p/2. Since
the real part of such a quaternion will always be positive, it can be recovered using the
assumption of unit length. Thus, the four elements of a unit quaternion in thispositive real

form are not independent. For such aquaternionq=[wxy z]

w= J1-x—y? -7 (359
from which it follows that

C+yr+ 7 = 1-w (3.55)
and

ey +Z+wi =1 (3.56)

If wisallowed to vary between negative and positive onein Eq. (3.55) and Eq. (3.56), these
equations become descriptions of the interior and surface of a unit sphere in three-
dimensional space. This sphereisfilled twice, once asw varies between 0 and 1, and once

asw varies between 0 and -1.

e Transforming Angular Rates To A Quaternion Rate

Angular rates, p, g, and r, may be used to find the derivative of the
orientation quaternion, ¢, relative to the earth-fixed coordinate system. Suppose a rigid

body isfirst rotated by an angle qg; about an inclined axis specified by the unit vector v;. If

v, isin earth coordinates, the unit quaternion representing this rotation is



a, = g%os%, vlsin%g (3.57)

Assume the body is then rotated by an angle g, about a second axis v,

expressed in body coordinates by the unit quaternion g,.

a, = g%osq—zz, vzsin%g (3.58)
For small g,
cos%2 @l s nq—z2 @% (3.59)
and thus (3.58) becomes
6% G, v, 28 (3.60)

Assuming g, changes linearly with time, the orientation expressed by g, as a function of

time becomes

B0 = & 3v,010 (3.61)

for small t. v,gq expresses an angular rate of q about a vector v, in body coordinates. Thus

v,=(0 paqr) (3.62)

and (3.61) becomes

6 = & %pt %qt %rtg (3.63)

Taking the derivative of (3.63) with respect to time produces

d ..
S0 =a=3 3p 3q 518 (3.64)
=30 parn) (3.65)
= %Bw (3.66)

If g, istheinitial orientation is earth coordinates and g, is a second rotation

in body coordinates, then g5 is the composite rotation combining the two rotations.

Oz = U1 (3.67)



By the product rule

. . . 1
Gy = G0, +0y0, = Oy = 50,W (3.69)

The components of g,are given by

Qoo = ~5(d11P + 0120+ Gsar) (3.69)
Qa1 = 5(010P+ 03, ~0350) (3.70)
gy = 3(0300+1gP—0yy1) (3.71)
Qa3 = 5(0107 + 4120~ 012P) (3.72)

In general, Eq. (3.69) through (3.72) are expressed by the quaternion multiplication

q=30%=300pqr) (3.73)
Note that Eq. (3.73) offers the potential of orientation tracking of rigid bodies using no

trigometric functions whatsoever. [Ref. 53.]

f. Representing Orientations Without Singularities

Quaternions can be used to represent al orientations without singularities
and thus are alogical choice when representing the orientation or arigid body which may
go through the vertical. A precise method of overcoming the singularities associated with
Eqg. (3.20) involves transformation of rotational rates sensed in body coordinatesinto arate
guaternion Eq. (3.73), and integrating to get a quaternion representation of orientation[Ref.
52].

C. MODELSFOR HUMAN BODY TRACKING

Unlike dynamics models, kinematic models involve the study of motion
independent of the underlying forces which cause it. Only geometrical and time related
properties of motion such as position, velocity and acceleration are defined. [Ref. 17.]
Kinematic models represent articulated structures as a series of interconnected links. The
relationships between these links may be extremely complex. They may be described using

either homogenous transformation matrices or quaternion/vector pairs.[Ref. 30.]



1 Kinematic Models Based On Homogenous Transformation Matrices

The human body can be modeled as an articulated structure involving links
connected by revolute joints. Multiple degree of freedom joints can be modeled as multiple
collocated single degree of freedom joints. Each joint is assigned an individual reference
frame which is related to the reference frames of adjacent links by a 4 x 4 homogenous
transformation matrix which expresses both a rotation and a translation. The rules used to
derive the matrix are dependent on the notation in use. There are two common, but similar
notations for expressing the relationship between neighboring joints in the an articulated
structure. These notations are the Denavit-Hartenberg (DH) and the Craig or Modified
Denavit-Hartenberg (MDH). The DH and MDH notations are equivalent, with the
exception that the link frame of reference coordinate origin for DH links is attached to the
outboard motion axis of the link while the corresponding origin for MDH linksis attached
to the inboard motion axis. [Ref. 17.]

As a body moves, the relationships between the frames associated with the links
change. Thus, describing a body posture simply involves expressing the relationships
between adjacent frames. Four parameters are used to describe the relationship. These are
link length, link twist, link offset, and joint angle. In an articulated structure involving only
revolute joints, only changesin joint angle occur. All other parameters are fixed.

Figure 3 depicts frame assignment and the standard MDH parameters associated
with each link. Link;_, isinboard of axis; and thus Link;_; isreferred to as the inboard link
and link; as the outboard link. Again DH is equivalent, but attaches the link frame of
reference to the outboard motion axis. The four MDH parameters depicted are:

* inboard link length: a,_; = distance from z_, to z measured along x;_;
* inboardlink twist: a ;.; = angle between z,_; and z measured about x;_,
« outboard link offset: d; = distance from x;_; to x; measured along z
* outboard joint angle: Q ; = angle between x;_; to x; measured about z
Oncethelink parameters have been measured, aMDH transformation matrix which

relates the frame for i-1 to that of i can be created. It is given below by [Ref. 17.]:

a7



cosQ; —sinQ; 0 aj_1q

-ip sgnQjcos(aj_1) cosQjcos(a;_1) —sin(aj_1) —sin(aj_1)d; (3.74)
P s'nQisin(ai_l) cosQisin(ai_l) cos(ai_l) cos(ai_l)di '
0 0 0 1

Rotating and positioning the outboard joint coordinate system relative to the inboard joint
coordinate system requires multiplication of i'lTi and iTi +1- This composition of two

4 x 4 matrices will require 64 multiplications and 48 additions Taking into account the
redundant last rows this can be reduced to 36 multiplies and 27 additions [Ref. 88.].

AXisi

Link:

Link _,

Axisi-1

Figure 3: Frame Assignment Under MDH After [Ref. 17.]

2. Forward and Inver se Kinematics

Kinematic problems are often separated into two classes. Inforward kinematics the
motion of the end effector is determined indirectly as the accumulation of the
transformations that lead to it. All joint angles are specified explicitly to define an exact
position for the entire structure. Complete control is maintained over the kinematic
structure, but it may be counterintuitive and complicated to use in practice. Forward
kinematics applications are less demanding computationaly and are commonly used to set
predefined postures. Inverse kinematics or goal directed motion entails calculating joint

angles given the position and orientation of the last link or end-effector and possibly some



intermediate links. Inverse kinematics is generally not as straightforward as forward
kinematics. In an under specified system involving aminima amount of information, there
may be an infinite number of solutionsfor agiven end-effector position and orientation. As
the number of links increases, the difficulty of finding an unambiguous solution will

increase. In such acase, additional constraints or heuristics may be applied to the system to
allow aunique solution to be selected. The solution may be closed form or it may be arrived
at numerically. Methods of obtaining closed form solutions may be either algebraic or

geometric. In any event, the method of solution will tend to be unique for each specific
case. Performing the computationsinvolved in inverse kinematicsin real-time can often be
difficult even when using a closed form solution.

Minimizing the number of position/orientation sensors used in body tracking
applications reduces user encumbrance. However, reducing the number of sensors can
mean that the orientation of some links will not be tracked directly. Since solving the
inverse kinematics problem allowsthe transformsfor untracked linkswhich are not directly
sensed to be found, a great deal of research has been done involving inverse kinematicsin
body tracking applications [Ref. 10.][Ref. 11.][Ref. 85.][Ref. 79.]. In these applications, 6
DOF sensors are required on al end-effectors such as the hands and feet. The solutions
found require considerable computational overhead. In addition, the posture of the model
can beinaccurateif the heuristics and constraints empl oyed cause the sel ection of asolution

that does not match the actual position of the user.

3. Kinematic Models of the Human Body based on Joint Angles

Kinematic models of the human body are often quite complex. Attemptsto simulate
the range of motion of the human skeleton typically result in articulated structures
containing on the order of 60 degrees of freedom [Ref. 11.][Ref. 78.][Ref. 88.]. Such
models can require a transformation matrix as given by Eq. (3.74) for each link. Since links
can not be positioned independently with such amodel, each change in posture requires up

to 60 matrix multiplications or at least 3,780 scalar operationsto reposition the model. The
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computational load will increasefurther if thereisaneed for inverse kinematic cal cul ations
to determine the positions of some limbs. Nevertheless, kinematic models based on
homogenous transformation matrices and joint angles are well suited for use with sensing
systems which provide joint angles as output. Other alternative models may be more
appropriate when working with sensors which provide link orientation and/or position
relative to Earth coordinates as output.

Noisy or inaccurate sensor information in human body tracking applications can
result in postures which are unrealistic of impossible for ahuman to perform. For example,
when the elbow is completely flexed, inaccuracies in sensor data due to noise or a lack of
precision can place the upper and fore arms in the same location. Joint angle models based
on transform matrices alow the implementation of joint limits which match the motion
limits of a human skeleton. If sensor data results in a calculated position which is beyond
the joint limits of the link, the limb can simply be placed at the limit and transformations
can continue based on this“limited” position. Often other representations of limb segment
orientation are converted to matrix form for this purpose. In [Ref. 88.], orientation datais
input in quaternion form. These quaternions are then turned into rotation matrices for
application of joint constraints and submission to the graphics API.

In networked applications involving body tracking, it is necessary to pass posture
data between remotelocations. If full kinematic models containing all fixed transformation
matrix parameters are stored at each location, only the variable joint angles need to be sent
across the network each time a posture update is made. Thus, if asixty DOF model is used
and the joint angles are specified using 16 bit numbers, only 120 bytes of information must
be sent across the network. It should be noted, however, that once the joint angle data has
been received, each location will be required to perform numerous matrix multiplications
to reposition the model. It would thus be desirable to find a method of specifying
orientation with an equivalent network bandwidth requirement that required amore limited

computational overhead at each location.



4, Orientation Only Tracking

In orientation only tracking applications, the posture of a human model is set using
only orientation data. Position data for a single reference point is used only to place the
entire human model within a synthetic environment.

Inertial sensors provide orientation relative to an earth fixed coordinate reference
frame. In early inertial angle tracking work in [Ref. 28.], Frey showed that an entire human
body simulation can be built and animated using only orientation data for each body part.
Thisresult eliminated the need for human body motion capture systemsto track the position
of each body part and showed that orientation data alone could be used to determine body
posture.

Usta created a human model designed to accept a quaternion representation of
orientation relative to an earth fixed coordinate reference frame. The input data was
provided by prototype inertial trackers. The quaternions were then turned into rotation
matrices for submission to the graphics API and the application of joint constraints [Ref.
88.]. He did not use the quaternions to directly orient individua body segments for
graphical rendering. Qualitative results from his work are shown in Figure 4. Only static
tests were performed.

Other work has discarded the position data from active magnetic systems for
posture determination and used only orientation data to drive the animation of a human
model. This orientation data was used to determine joint angles which were applied to
kinematic models [Ref. 78.], [Ref. 64.]. Though Molet transmitted orientation quaternions
across a network to save bandwidth, the quaternions were converted to rotation matrices.
Inverse kinematic calculations were made to allow severa joints to be driven with one
sensor [Ref. 64.].

5. Kinematic M odels based on Quaternion/Vector Pairs

Quaternion/vector pairs represent a rotation using a quaternion and a translation

using a vector. [Ref. 30.] Utilization of sensors which output orientation datain an earth-
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(d) 90 Degrees of Elevation at the

(c) Forearm and Upper Arm shoulder (No singularity)

Figure 4: Inertial Motion Tracking of the Right Fore and Upper Arm with
Two Inertial Sensorsand a Quaternion Attitude Filter From [Ref. 88.]

fixed coordinate reference frame is more applicable to the use of kinematics models based
upon quaternion/vector pairs. In this case, each limb segment can be oriented without
regard to the orientation of adjacent segments [Ref. 28.]. The posture of the user can be
reconstructed by simply attaching the representations of individual limb segments together
in the same manner in which the corresponding segments on the body of the user are
connected. Thereisno need for coordinate transformations or the associated transformation
matrices to determine joint angles. Body posture is entirely determined based upon limb
orientation and length and the quaternion and vector which represent these parameters.
Given low noise orientation data of sufficient accuracy, it should not be necessary
to apply joint angle constraints to correct position errors. If this data is supplied in

guaternion form, the need to generate rotation matrices and perform numerous matrix
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multiplications can be avoided. Each limb segment can be oriented via multiplication by
unit quaternions as described by Eqg. (3.52). Limb segments can be positioned through a
rotated tranglation vector derived from concatenation of vectors pointed from proximal to
distal joints.

Figure 5 depicts a human model designed for the input of quaternions representing
the orientations of the individual limb segments. The animation of the human figure is
accomplished without rotation matrices. When al of the limb segments are in their
reference positions, the body-referenced x axes are pointing north, y axes pointing east and
z axes point down. The orientation of each limb segment in its reference position is

described by the unit quaternion

q= (3.75)

o O

0
The first element of this quaternion is the cosine of the half angle of rotation. When in the

reference position there is no rotation (cos 0 = 1).

Figure 5: Human Model Designed For Quater nion I nput



Each numbered link in Figure 5 has two connection points and a vector which
connects them. This vector direction is outboard toward the more distal joints. The vector
p;; extendsfrom theinboard connection point to the outboard connection point of linkj. The

vector pj; isaquaternionwithareal part equal to zero. Thelength of p;; isequal to thelength

of link j. Thus, the position and orientation of limb segment] is described by the quaternion/
vector pair (g, pjj)-

When alink j is no longer in its reference position, the orientation of that link is
given by the unit quaternion ;. Thus, the orientation transformation applied to each vertex,

v;, in the graphical representation of the limb segment corresponding to link j is

Vi = a0 (3.76)

For link 1 the rendered position and orientation is given by vertex transformation

Vi = Pgot+9,Viay (3.77)

For link 2 the transformation applied to each vertex is

\/2 = pEO +q1p01q1 + q2V2q2 (378)

In general, the nth link outboard from the base is positioned and oriented by

Vi = Peo* aPorlh + 0,P1o05+ ¥ + 0y 1Py 1001 +0,Vely (3.79)
Obvioudly, the links should be positioned and oriented by working outward from the base
and saving intermediate results. This eliminates the need to repeat identical calculations
when multiple limb segments are attached to the same inboard link. It should be noted that
Eqg. (3.76) through Eg. (3.79) involve only scalar additions and multiplications. The are no
trigometric functions or matrix multiplications. Positioning and orienting the structure
depicted in Figure 5 will require approximately 840 scalar operations.
In networked simulations, the use of quaternions requires considerably less
bandwidth than that of joint angles. Specifically, for a unit quaternion all elements are

within the range +/- 1. Integer representation of a unit quaternion with 1% accuracy



therefore requires four bytes. For the purpose of networked simulation, the human body can
be adequately modeled using fifteen limb segments. Thus, posture updates using a
guaternion representation require that approximately 60 bytes of information be sent across
the network. Thisis roughly the equivalent of that required for the update of a kinematic
model with 60 degrees of freedom. If unit quaternions in positive real form are used, only
45 bytes need be transmitted. In addition, the amount of computation at each end will be

greatly reduced when quaternion representations of orientation are used.

D. SUMMARY AND CONCLUSIONS

Homogenous transform matrices and Euler angles are widely used by both the
graphics and robotics communities. This utilization is mostly due to their familiarity and
matrix formulation. There are however severa disadvantages to the use of these
formalisms. Homogenous transform matrices require the storage of 16 numbers, seven of
which are redundant or constant for any matrix. The composition of two rotation matrices
requires 36 scalar multiplications and 27 adds. The use of trigometric functions is even
more expensive since approximation is usually carried out using Taylor series. Within a
rotation matrix there are at least six trigometric functions which must be evaluated. Each
requires numerous scalar operations. Use of Euler angles results in singularities whenever
the inner and outer gimbal rotation axes become collinear. Thus, they are not appropriate
for tracking the orientation of arigid body that can assume any orientation.

Kinematic models of articulated structures which are based on homogeneous
transform matrices must orient and position each link with respect to the orientation and
position of the inboard connecting link. Changing the posture of a 60 DOF human model
will require at least one multiplication of two 4 x 4 matrices per joint. Kinematic models
based on homogeneous transform matrices are well suited to tracking systems which
provide joint angle output. The ability to implement joint limits allows correction of some

problems which might occur when using noisy or inaccurate sensors.



Quaternions and quaternion/vector pairs offer an alternative to rotation matrices
based on Euler angles and homogenous transform matrices.[Ref. 30.] Though in less
general use, in terms of computational efficiency and compactness they are superior.
Thinking about a matrix which expresses a rotation about a non-principal axis is just as
difficult as imagining a quaternion which specifies a rotation about an arbitrary vector.
Thus, intuitively quaternions are no more difficult to work with than rotation matrices.
Storage of aquaternion requires four numbers (three for quaternions in positive real form)
where as an equivalent rotation matrix requires nine. Quaternion vector pairs require the
storage of only seven numbersin contrast to the sixteen of ahomogenous transform matrix.
The composition of two rotations and translations using quaternion/vector pairs requires
only 32 scalar multiplications and 24 additions. In many practical applications, thereisno
need to evaluate any trigometric functions. Quaternion representations of orientation do not
result in any singularities.

Kinematic models based on quaternion/vector pairs are computationaly more
efficient than those based on homogeneous transform matrices. Thisisespecialy truewhen
they are driven by orientation data which is described relative to a world coordinate
reference frame. When compared with joint angle updates of posture, the bandwidth
requirements are roughly the same. If it is necessary to transmit both trandation and
orientation data, quaternion/vector pairs require approximately one fifth the bandwidth of
homogenous transform matrices. Update of the posture of a 15 segment human model will
require 840 scalar operations. This is an order of magnitude less than the 3,780 scalar
operation needed to reset the posture using transform matrices. An articulated structure
based on quaternion vector pairsincludes no notion of joint angles. Thus, it is not possible
to implement joint angle constraints using this formalism and when using noisy or
inaccurate sensorsit may be advisable to adopt the more traditional approach of a Denavit-

Hartenberg type system.



V. REVIEW OF FILTER THEORY AND DESIGN

A. INTRODUCTION

In physical applications, sensor outputs are commonly processed by digital
computers with the intention of making some determination regarding the physical world.
Examples of these determinations may include estimates of velocity, acceleration, position,
temperature, pressure, etc. In human body tracking applications, the goal is to use sensor
signals to estimate the orientation of a rigid-body. Unfortunately, because of size
limitations and cost considerations, sensor output is rarely of sufficient quality to allow
direct estimation using naive algorithms [Ref. 49.]. The sensors themselves will have
accuracy limitations. In addition, the output of the sensorswill be corrupted by noise. Thus,
it isnecessary to process sensor output datain amore rigorous manner to separate the actual
sensor signal from the noise which is present and arrive at the “best” estimate possible
given the inaccuracy of the sensors themselves. The algorithms used to process the signals
from the sensors are generally termed filtering algorithms

The primary purpose of a filter or filtering algorithm is to separate signals from
noise. Classic examples of this type of filtering include high and low pass filters which
respectively attempt to separate low and high frequency noise from a signal. Removal of
noise from a signal will tend to smooth the output. More sophisticated filtering may also
combine signals from several sensors in order to produce an estimate which is “optimal”
with respect to some criteria. These types of filters are usually based upon a probabilistic
model of the signal being estimated as well as the overall system to which it is related.
Encapsulation of this model within the algorithm provides the additional capability of
prediction. This may be important in applications in which timeliness is critical, since a
predicted value can be used in place of an actual estimate.

I nertial/magnetic human body tracking is essentially a navigation problem with the
goal of determining the orientation of each body segment. Sensor input comes from

miniaturized sensors. No single input is of sufficient quality to accurately determine
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orientation over along period. It is therefore necessary to combine the signal from several
sensors to arrive at an accurate estimate of orientation. Since the effects of lag are so
devastating to the sense of presencein asynthetic environment, cal culation of this estimate
must not be so computationally demanding that it can not be made in real time. Thus, the

most accurate filter possible may not be the best choice if it istoo slow.

B. MINIATURE INERTIAL SENSORS

MEMS, or microel ectromechanical systems, areintegrated systems combining both
electrical and mechanical components. Unlike conventional semiconductor manufacturing
or microelectronics in which electronic circuits are implemented, MEMs devices contain
three dimensional mechanical structures. These “micromachined” mechanical structures
have dimensions which are measured in micrometers. By combining microelectronics and
micromachining, precision electronics are closely integrated on the same device. The
el ectronics sense the positions and deflections of the mechanical elements. Since they are
in such close proximity, parasitics and noise are reduced and reliability isimproved.

[Ref. 9]

At least four different micromachining techniques arein use or under devel opment.
Slicon micromachining is a relatively developed micromachining technique since it is
closely related to the production of microelectronic circuitry. Silicon is the primary
substrate material used. Electrochemical etching techniques are being investigated to
extend the set of basic silicon micromachining techniques. Slicon bonding techniques can
also be utilized to extend the structures produced by silicon micromachining techniques
into multiple layers. Excimer laser techniques use an ultraviolet laser to micromachine a
number of materials without heating them. The excimer laser lendsitself particularly to the
machining of organic materials (plastics, polymers, etc.). LIGA! is atechnique that can be

used to produce moldsfor the fabrication of micromachined components. Microengineered

1. The acronym LIGA comes from the German name for the process (Lithographie, Galvanofor-
mung, Abformung).



components can be made from a variety of materials using this technique. More than one
micromachining technique can be involved in the manufacture of a hybrid MEMs device.
Photolithography is used in conjunction with al of the micromachining techniques
described above. [Ref. 9.]

Sensors are a specialized type of transducer. MEMs sensors convert a physical or
chemical quantity into an electrical one. Though each sensor type has a set of advantages
and disadvantages, the orientation of arigid body may be determined using only datafrom
body-mounted accelerometers, angular rate sensors, or magnetometers. Improved static
and dynamic accuracy can be obtained by combining data from all of the sensor typesin a
complementary manner.

MEMs magnetic sensors or magnetometers can use severa different methods to
sense the local magnetic field. Hall effect sensors consist of a conducting material, usually
asemiconductor, through which acurrent is passed. In these sensors, changesin anisotropic
magnetoresistance (AMR) occur when a magnetic field is applied perpendicular to the
current flow. Two magnetoresistive sensing elements or contacts may be placed on
opposite corners of the device. Sensing contacts are also placed on the remaining corners
of the device, opposite each other and perpendicular to the current flow. Changes in the
magnetic field perpendicular to the plane of the contacts are detected as a change in the
potential difference between the two sensing contacts. [Ref. 9.][Ref. 43.]

Several mgjor techniques are used to design MEMs accelerometers. Due to the
newness of the field, performance ranges and optimal application areas of each have yet to
be determined. In one technique, a silicon diaphragm to which amass has been added isthe
basic structure used. Under acceleration, the diaphragm bends causing a change in the
distance between a stationary and moving electrode. The resulting change in capacitanceis
converted into a voltage. Piezo resistive materials in which the resistance changes as the
material bends can aso be used. Accelerometers based on this technique, consist of a mass
suspended from thin beams. Under acceleration, aforce (f = ma) is devel oped which bends

the suspending beams. Piezoresistors positioned where the beams meet the support are used
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to detect accel eration. Vibrating beam accelerometers (VBAS) usetwo resonatorsvibrating
at their natural frequency. One resonator is compressed by acceleration while the other is
tensioned. The frequency of the tensioned resonator increases while the frequency of the
compressed resonator decreases. The acceleration is determined by the difference between
the two frequencies. [Ref. 9.][Ref. 43.]

Most miniature and micromachined angular rate sensors are based on the Coriolis
tuning fork principle. Gyroscopes that use vibrating rather than rotating bodies to detect
gyroscopic torques from coriolis acceleration are more reliable and less expensive than
rotating gyros. The “tuning fork” structure is set to stable vibration at its fundamental
frequency. As it is rotated about its axis, Coriolis acceleration generates a sinusoidaly
varying precession. The amplitude of the generated sine wave is proportional to the input

angular rate about the axis and is given by

as= 4v\£ 4.0
wherev isthetine velocity, Wistheinput rate, and K isthe stem torsional stiffness constant.
[Ref. 43]

C. RANDOM PROCESSES

In order to work with the output of a sensor, it is necessary that its output signal be
described in mathematical terms. Infilter theory, the characteristics of asignal are captured
by the notion of the stochastic or random process. The concept of a random process
associates time with arandom variable. In this abstraction, it isimagined that an ensemble
of identical experiments are conducted simultaneously. In each of these experiments the
random signal of interest is being generated. The value or state of arandom process, X, can
be examined at any timet. For afixed timet, the value of the random process is described

by the random variable, x.

X(t) = x (4.2



If the parameter t isdiscrete, then X is adiscrete-time random process. If the parameter tis
continuous, then X is a continuous-time random process. Since X is random, the value at
timet will generally not be the same for all experiments. What is of interest is the expected
value, and how the process is correlated with itself in time, and how the process might be
correlated with other processesin time.

How aprocessis correlated with itself in time is expressed by the autocorrelation

function. The relationship between the state at timest; and t, is given by

¥ ¥
Ry(ty, t,) = E[X(t)X(t))] = E[X;X,] = ) OXgXof (Xqs X, by, ty) X, X, 4.3

¥y
where f is the second order probability density function for X. If a process is closely
correlated with itself, the value of Eq. (4.3) will be positive. If Eq. (4.3) hasavalue of zero,
the process is uncorellated with itself in time. For a stationary process the value of Eq.
(4.3) is only dependent upon the difference, t = [t; - t5|. The power of asignal is given by

the autocorrelation function whent; =t,. That is,

Re(tt) = E[X(OX()] = E[X*(1)] (4.4)

Therelationship between two processis expressed by the crosscorrelation function.

The correlation between the process X and Y at the timest; and t, is given by

¥ ¥

Ryy(t: t) = E[X(t) Y(t,)] = E[X Yol = O OXyYof (X, Vo ty, o) dX,dly, (4.5)
¥ ¥

Again, if the processes are uncorellated Eq. (4.5) will have avalue of zero. Negative values
indicate the processes are negatively correlated. Autocovariance and crosscovariance are
zero mean versions of the autocorrelation and crosscorrel ation functions respectively.

In filter theory, both the input and the output of afilter or system are treated as

random processes [Ref. 14.]. Thus, filter design becomes an in depth examination of how
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the input processes of a system are related to the output processes. In practical applications,
severa simplifying assumptions are usually made. Processes are usually treated as Wide
Sense Stationary (WWS) meaning that second order probability density functions are time
invariant. It isalso usually assumed that processes are ergodic or only asingle sampletime
signal of aprocess is needed to obtain all necessary information about the signal. Proving
two processes are independent requires that any moment of their joint probability density
functions will be zero. Thisis usually very difficult. Thus, independence is usually only

assumed based upon empirical data [Ref. 14.].

D. LEAST SQUARESFILTERING

A system is a mathematical model that relates an

Xt) —»1 h(t)y ¥t

input signal x to the output signal y. Figure 6 shows block

diagrams of linear systems in the time and frequency (a) Linear System in the

domains. In each system diagram, the input is related to Time Domain

the output by a function. When working in the time X(S) —» H() > Y(9)

domain, thisfunction is call theimpulse response(h(t) in

diagram (a)). The relating function in the frequency (b) Linear Systemin the
Frequency Domain
domain is termed the transfer function (H(s) in diagram Figure 6: Block Diagrams of

(b)). Mathematically, the output or a linear system is Linear Systems

expressed by a convolution integral. In the time domain the integral is written

¥ ¥
y(1) = Qh(t)x(t—t)dt = h(t—t)x(t)dt (4.6)
¥ —¥

In the frequency domain, the convolution integral becomes a simple multiplication.

Y(s) = H(9)X(9) (4.7)
It should be noted, that working in the frequency domain is specialized to WSS processes
[Ref. 14.].
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If the input and the outputs of a linear system are random processes, it becomes
necessary to determine the expected output of the system given an expected input. In the

time domain for alinear system Eq. (4.6) becomes

¥
E[Y(1)] = EL(‘)h(t)X(t—t)dt]
¥
¥

= Ah(t)E[X(t—t)]dt (4.8
o

—¥
Filters are described as systems in which the inputs and outputs are random
processes. In alinear system, the impulse response or transfer function is applied to anoisy

input to produce an estimate of a desired noiseless output, which is written

¥
Y(1) = Oh(t)X(t—t)dt (4.9

¥
The purpose of the filter under least square filtering is to minimize the estimation error. In
particular, if the estimate of the noiseless output, v(t), is perfect the difference between
these two values will be zero. Minimization of the square of the expected error takes the

form

e = E([Y(1) - ¥(t)] ) (4.10)
whereeisthesguared error criterion. Inlinear minimum mean-square error estimation, it

is assumed that X(t) and Y(t) are related to one another by some linear function. Eq. (4.9)

replaces Y(t) in Eq. (4.10) with aterm involving the filter impul se response and the input.

e= El [Y(t) - t‘)h(t)x(t—t)dt:|zg (4.11)
! -¥

In the method of nonlinear mean-square estimation it is assumed that the input and
output processes are related by anonlinear function. In this case, the squared error criterion
becomes

e = E{[Y-g(X)]% (4.12)



where g is some nonlinear function of X. Choosing the form of the function g is difficult

due to the multitude of possihilities. In theory, the best nonlinear estimator is given by

9(X) = E[Y|X] (4.13)
However, in most practical applicationsthisfunction isdifficult to find [Ref. 58.]. In many
cases, a more tractable problem can be created by approximating a nonlinear relationship
using alinear function.

The exact manner in which the transfer function is determined iswhat characterizes
the different types of filters. Wiener filters are linear mean square error filters for stationary
random processes. Complementary filters are aspecialization of Wiener filtersin which no
assumptions are made about the signal structure. Kalman filtersare also linear mean square
error filtersin which the estimation processis recursive. The process model of an Extended

Kalman filter is nonlinear, but the estimation itself islinear. [Ref. 14.]

E. WIENER FILTERING

Linear mean square error filtering began with the work of Nobert Wiener. [Ref. 14.]
Thiswork attempted to separate one noiselike signal from another. The end result tells how
past values of input should be weighted in order to estimate the present value of the output.
The theory developed is characterized by the following assumptions [Ref. 14.]:

» Both the signal and noise are random processes with known auto- and
crosscorrelation functions.

» Thecriterion for best performance is minimum mean-square error.

» A solution based upon scalar methods will lead to the optimal filter weighting
function.

The significance of the first and third assumptions should be noted. The first indicates that
the complete spectral characteristics of both the noise and the signal must be known. The
exact manner inwhich all signalsare related must also be known in order for aWeiner filter
to produce an optimal estimate. The third assumption emphasi zesthe reliance of the Weiner

filter theory upon scalar methods. This reliance makes it difficult to apply Wiener filter



theory to systems with multiple time inputs and outputs. Wiener filters may be either

continuous or discrete.

1. Continuous Weiner Filters

If it is assumed that all processes are stationary and the filter is not time-varying,
prediction, filtering and smoothing problems may be solved with a Weiner filter. If the
input signal is continuous, the Wiener filter estimate of the output at a particular timetis
formulated as

b
Y(1) = g(t—t)X(t)dt (4.149)

a

Thetimet may or may not bein theinterval [a, b]. X(t) represents the measured data. h(t)
istreated as a set of weighting functions. The error should be orthogonal to the data. Thus,

b

E[(Y(t) - Y(1))X(5)] = E{Y(t)X(s)—@(t—t)X(t)X(s)dt] =0 (4.15)
Thisimplies that
E[Y(t)X(s)] = EEc‘p(t )X(t—t)X(s)dt:| (4.16)
or
b
Rix(ts) = i(t—t)Ry(t, s)dt (4.17)

Eq. (4.17) isknown as the Wiener-Hopf equation [Ref. 14.]. Theoretically, this result can
be used to solve for the weighting function given the assumption that the auto- and
crosscorrelation functions involved are known. However, there is no general solution
method for all practical applications. Usually, specialized forms based upon one or more

simplifying assumptions are solved.



Weiner filters may be causal or noncausal. The weighting function of a noncausal
filter requiresthefilter to “look ahead” of real-time and use datawhich isnot yet available.
The estimate of the output at a particular timet, for anoncausal filter is given by

¥
Y(t) = gh(t—t)X(t)dt (4.18)

—¥
The auto- and crosscorrelation relations can be expressed as
¥
Ryx(S) = Oh(t)Ry(S—t)dt (4.19)
v
If isassumed that the processesinvolved are WSS, a closed form solution for the weighting
function can be found in the frequency domain. Taking the Fourier transform of both sides

of Eq. (4.19) produces
Syx(iw) = H(jw)S,(jw) (4.20)

Thus, by rearranging Eq. (4.20) [Ref. 14.]

Syx(jw)

HOW) = S0 (4.21)
If it is assumed that the input measurement has the following form
X(t) = Y(t) +n(t) (4.22)
where n(t) is uncorellated Guassian noise. Then Eq. (4.21) will become [Ref. 86.]
H(w) = z—orIW (4.23)

Syy(iw) + §,n(1w)

Noncausal filters are applicable to applications in which post-processing of data is
performed, but are not useful in real-time tracking applications.

Casua systems are dependent only upon the past and present values of input and
are therefore applicable in real-time applications. The estimate of the output, for a causal
filter isgiven by [Ref. 14.]



Yt+1) = (é‘,h, (a)X(t+a)da (4.24)
¥
where t is the “present” time. Unfortunately, there is no closed form solution for the
weighting function in Eq. (4.24). Application of methods such as inovation and spectral
factorization become necessary [Ref. 14.].
Application of continuous filter theory to digital computers which are processing
sampled data can be difficult. Discretization of atransfer function of afilter formulated in

continuous time may not produce the results desired.

2. Discrete Weiner Filters

Wiener filtering of discrete data is also a weighting function approach. The
weighting function again attempts to weigh all past datain a manner which produces the
best estimate. Given n noisy input measurements at times t; through t,, the estimation

becomes

Y = agX(t) + ayX(t,)+ ¥a +a X(t,) (4.25)

and the mean square error becomes

e = E{[Y() = (a, X, + 3, X, + ¥ +a X )]’} (4.26)
To find the minimum of the squared error criterion in Eq. (4.26), the partia

derivative with respect to each a, istaken.

Te _ g
= - ELCY() = Y(1))X(t;)]

= E[Y—l (8 X, + a,X, + Vi +a X )X:]
= E[YX; - aX; X -a5X; Xo~Ya—a,% X, ]
= E[YX] - a, E[X X, ]-a,E[X;X,] Y2 -a E[X;X,]
= Ryy(t ) — 8y Ry(t;, ty)—a,Ry (L, t,)-Ya—a Ry (t, t,) = 0 (4.27)

These n resulting equations can be expressed in matrix form by [Ref. 14.]
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Rt ) % Rytut)rq ]
- - Rey(ty )

Ra = |Ry(t,t) % Rt |= - = R, (4.28)

Rey(t,, 1)

Rultyty) % Ryltyty)|L ™

Thisimpliesthat a can be solved for by inverting the n x n matrix R.

a=R'R, (4.29)
The above assumes that each of the auto and crosscorrelation functions in Eq. (4.28) is
known.

Inversion of Rin EQ. (4.29) can be computationally expensive. Thisinversion must
be completed each time anew estimateisrequired. Asthe size of the data set increaseswith
time, the growing dimension of Rwill soon make the problem intractable. A limitation may
be placed upon the number of previous measures used, but inversion of ann x n matrix will
still be necessary each time a new data point is received. It should also be noted the Eq.
(4.28) takes into account only one input and one output. If multiple outputs are involved,

there will be multiple matrices to be inverted.

F. KALMAN FILTERING

The Kalman filter is an alternate method of formulating the linear minimum mean-
square error filtering problem which utilizes state space methods [Ref. 14.]. The two main
features of the Kalman formulation of the problem are vector modeling of the random
processes under consideration and recursive processing of the noisy measurement data
vector. Unlike the discrete time Wiener filter which must reprocess all previous data each
time a new estimate in required, recursive processing allows an updated estimate to be
made using only the results from the previous estimate.

Kamanfilter theory continues the assumption that the spectral characteristicsof the

processes involved are known. All noise sources are assumed to be white and Gaussian



[Ref. 49.]. “Whiteness” implies that the noise values are not correlated in time and have
equal power in all frequencies. Gaussian noise amplitude takes on the shape of a normal-
bell shaped curve. The probability density of a Gaussian noise source is completely
described by its mean and variance. Under these assumptions a Kalman filter will produce
an optimal estimate of the variables of interest. This optimality is based on Bayes theorem
and the use of conditional probability density functions [Ref. 91.]. Continuous Kalman
filters are only of theoretical interest and are rarely used in practical applications and thus

will not be discussed here.

1. Discrete Kalman Filters

Discrete Kalman filter theory is primarily based upon a process model and the
measurement equation. The process model express the physical characteristics of the
system. It predicts how the state of the system changes from one time step to the next.
Through the process model, unreasonable estimates made using only sensor data may be

discounted. This model for change is written [Ref. 91.]

Xysq1 = F X + W, (4.30)

n

where

* X1 and X, aren x 1 state vectors expressing the state of the system at the times
n +1 and n respectively.
* F,isannxnconstant state transition matrix expressing the physical equations
which govern system state transitions.
* W, isanx 1 process noise vector. The n independent white noise sources have a
known covariance and account for system inaccuracies.

The measurement equation [Ref. 91.]

= H X, +V, (4.31)

expresses how measurement datais related to the state of the system. Based on a given set

z

n+1

of measurements, it defines what state the system should be in. Individual terms are as
follows

* Z,isanmx 1 vector of measurement data at time n.
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*  X,isannx 1 state vector expressing the state of the system.

* H, isan mx n constant measurement matrix which relates measurements to the
system state.

* V,isannx 1 measurement noise vector. The n independent white noise sources
account for measurement inaccuracies. These noise sources are uncorellated withW,,
in EQ. (4.30) and have a known covariance.

The covariance matrix for the process noise vector, W,,, and the measurement noise

vector, V,, vectorsis given by

Q, = EIWW]] = E[WZ (4.32
and

R, = E[V, Vil = E[V}] (4.33)

The estimation error is expressed as

e = xk—>2R (4.34)
and the associated error covariance matrix is

P, = Elecel] = E[(X—X) (% —X)'] (4.35)
where the super-minus indicates that the best estimate prior to assimilating the actua

measurement at the corresponding time. The discrete linear estimation is

X = (1 =K H)Xe + K Z, (4.36)

For clarity, EQ. (4.36) can be rearranged and written as

Xi = Xz +Ki(Z,—H X (4.37)
The second term on the right side of the equation expresses the error or update. The
subtraction in the term produces the difference between the actual measurement and the

expected measurement. The n x n weighting matrix, Ky, is the Kalman gain matrix, which

isgiven by [Ref. 14.]

Ky = PeHI(HPHT+R)™ (4.38)

Evaluation of Eq. (4.38) requiresinversion of an n x n matrix.
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Figure 7: Kalman Filter Loop After [Ref. 14.]

Onceinitial estimates of the state (X ), and the error covariance (p,.) are determined,

Eq. (4.30) and Eq. (4.31) are repeatedly used to obtained updated estimates of the system
state as depicted in Figure 7. The elements of Kalman gain matrix will continue to change
during operation. Examination of Eq. (4.38) reveals that the only non-constant term is the
error covariance matrix. Thus, changesin thefilter gain are directly related to the estimated
accuracy of the current state estimate. In effect, a Kalman filter automatically provides

information about the quality of the estimates while doing the estimation through p_ .

2. Extended and Linearized Kalman Filters

In some applications, either the dynamic or measurement relations may be
nonlinear. The measurement equation may be a nonlinear function of the state variables,
the process model may be nonlinear function of the state variables, or both. These relations

can be expressed as
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Xop1 = 9(X)+W, (4.39)

and

Z,,1 = f(X)+V, (4.40)
where f and g are nonlinear functions of the state.

Eq. (4.39) and Eg. (4.40) may be linearized by taking partial derivatives of the
nonlinear functions. Under such conditions the transition or measurement matrices will no
longer be constant and must be updated each time anew estimate of the stateismade. There
are two basic methods of linearization. In alinearized Kalman filter, the partial derivative
of g or f is taken with respect to some nominal trajectory which does not involve the
measurement data [Ref. 14.]. In an extended Kalman filter, the partial derivative of g or f
may be taken with respect to the current state estimate [Ref. 91.]. The resulting matrix of

first partial derivatives or the Jocobian is given by

Trf_l ﬂf_l Ya E 1& Ya
X, 1%, xq 1%,
- ﬂf = F_ = Tlg = (4 41)
Hy ™ |1, 1, v, nox o |19, Y9, v, '
™ 75 ™ 7%
Ya Ya

In either case the actual filter remains linear and performsits estimation using alinearized
model or approximation of a nonlinear problem.

Neither method of linearization is without risks. Linearized and extended Kalman
filters can no longer be proved to be optimal based on a derivation using Bayes theorem
[Ref. 91.]. In an extended Kalman filter, there is a potential for bad estimates to get worse
and lead to an eventual divergence of the filter. This may be especialy true under
circumstancesinwhich theinitial uncertainty and measurement errorsare large. Linearized
Kaman filters will be inaccurate in situations in which the nominal trajectory does not
closely match the actual trajectory. Recognition and correction of poor performance

becomes a key component in the design of such filters.
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The shock of a Kalman filter expresses the difference between what is actually
measured and the best prediction of the state. The shock for extended Kalman filter at time
i this can be expressed as

S =z -f(m)-my (4.42)
where m, isthe mean of the system state and n, is the mean of the measurement noise. The

magnitude of a dimensionless shock term is given by

DS =S (HP(-H) +R)S, (4.43)
Should the magnitude of Eq. (4.43) become large compared to the number of components

of §, itislikely that the filter haslost track [Ref. 91.].

Extended and linearized Kaman filters have performed well in a variety of
applications. However, it must be recognized that the added complexity of these types of
filters makes them more computationally demanding than other types of filters.
Recal culation of the Jacobian during each update cycle takestime. The complexities of the
nonlinear models involved may make it difficult to produce updated state estimates in a

timely manner.

G. COMPLEMENTARY FILTERING

Both Weiner and Kalman filter theory are based on the assumption that the spectral
characteristics of the processes involved are known. In practica applications this
assumption is often difficult to satisfy. It may be impractical to model theinput signal asa
random process with known spectral characteristics. Complementary filters are “ad-hoc”
systems which are not dependent upon these strict assumptions. Though Weiner or Kalman
filter theory may be used to select an appropriate transfer function, neither method is
required. Complementary filters filter the input signal without unnecessary delay or
distortion.[Ref. 14.]

Complementary filtering is based upon the use and availability of multiple

independent noisy measurements of the same signal. If the measurements have
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complementary spectral characteristics, transfer functions may be chosen in such away as
to minimize estimation error. The general requirement is that one of the transfer functions

complement the sum of the others. Thus, for n measurements of asignal [Ref. 14.]

1=Hy(s) = Hy(8) =¥ —H, _;(s) = H,(s) (4.44)
This will allow the signal component to pass through the system undistorted since the
output of the system will always sum to one. The smplest complementary filter involves
two noise contaminated measurements of asignal. This situation is depicted in Figure 8. If
N, is predominantly low-frequency noise and N, is high frequency noise, the two noise
sources have complementary spectral characteristics. Choosing H(s) to be alow-passfilter

attenuates both noise signals. The output can be written [Ref. 14.]

Y(s) = X(9) + Ny (S)[L- H(9)] + Ny(s)H(9) (4.45)
where
HS) = 1o (4.46)

which satisfies the conditions required by Eq. (4.44). Since both high and low frequency
data are utilized, the filter output will not suffer from any delay in dynamic response due to
low-pass filtering.

Examination of Eq. (4.45)
indicates that the filter only operates (8 + Ni(S) =1 1-H(9) |

upon the errors and noise involved in Y
the system. The transfer function does

not directly affect the input signal X(s) + Ny(s) — 1 H(9

itself. For this reason, this type of

filtering is sometimes caled Figure 8: Complementary Filter Block
. . _— Diagram
distortionlessfiltering. [Ref. 14.]
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Figure 9 depicts a constant

_ +
gan complementary filter for Ja(9) ~>Cv><—

attitude estimation. Thetransform of )

the roll angle from accelerometer A
readings due to gravity is j(s), S «(9) #» : > (9)

while j  (s) istheroll angle obtained

Figure 9: Transform Domain Block Diagram

by integrating rate signals. If the Of Roll Angle Estimation Filter

accelerometer were noiseless and sensed only gravitational acceleration, k would be set to
infinity and the attitude estimation would be entirely accelerometer based. Use of noiseless
rate sensors with no bias would allow attitude estimation using only these sensors and k
could be set to zero. Since neither sensor isideal, a compromise value for k that gives the
best estimate must be found.

From Figure 9, the output of thefilter is given by

(9 = 30 o(9) -k (9+5 ) (4.47)

The filter transfer function based on accelerometer input alone with j (s) = 0 isgiven by

Gu(9=dl - k& _ k1 (4.48)

wheret = 1k With a unit step input, u(t), the frequency domain output of thefilter is

. _lek -k _1 1
Pa(®) = & ko™ SEeR - o 5eK (4.49)
The far right expression is derived through partial fraction expansion [Ref. 41.].

Transforming to the time domain produces

t

j ) =1-e“=1-¢" (4.50)
Since ¢ *» 037, when t equals t , the filter output due to accelerometer input has increased
to 1-0.37 = 063 Or 63 percent of its steady state value. Therefore, the accelerometer input
islow passfiltered.

Similarly, the transfer function for rate sensor input alone with j ,(s) = 0 is
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GS(S) = J_(_Sl = __l__ = —S_ = i (451)

j(9=tms o1 __ts (4.52)

Transforming to the time domain produces

t

() =e"=¢' (4.53)

Inthiscasewhen t = t , the output due to rate sensor input will have decreased to 37 percent
of itsinitial value. Eq. (4.53) high passfilters the rate sensor data.

From Eq. (4.48) and EqQ. (4.51), the combined transfer function due to both rate

sensor and accelerometer input is

j@) i) - 1 ts _ 1+ts _
l.a(S)JrJ'S(S)_1+ts+1+ts_1+ts_1 (4.54)

which sums to unity regardless of the value of k [Ref. 56.]. Transforming the sum into the

time domain produces the total response of the filter

t, t
5 -

Foelrei=1 (4.55)
e

2

This means that the initial response of the filter to a step change comes entirely from rate
input. The rate input decays exponentially over time and is replaced by complementary

“low frequency” accelerometer input.[Ref. 56.]

1 Crossover Frequency

The crossover frequency of a complementary filter represents the value below
which signals from one type of sensor are given a greater weight and above which signals
from another type of sensor are favored. At the crossover frequency, signals from both

inputs are weighted equally. For the filter depicted in Figure 9, below the crossover
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frequency accelerometer signalsare given greater weight. Above, therate sensor signalsare
more trusted.

The crossover frequency of afilter of the form in Figure 9 can be found by equating
the absolute values of the separate transfer functions [Ref. 50.]. Rewriting in the complex
frequency domain and equating the transfer functions from Eq. (4.48) and Eq. (4.51)
produces

[L_(Gw)

i G| (4.56)
iGw

i (W)

The magnitudes of the transfer functions are given by

j(wy =] 1 |= 1 (4.57)

i (W) 1L+jtwl 1202

and

W) | = |Litw | = __tw (4.58)

j ((jw) 1+jtw ,1+t2W2

Thus, at the crossover frequency

1=tw (4.59)

which implies

wel (4.60)

In Hertz, the crossover frequency, f., can be written as

_ 1 _ k
fC‘z"ﬁ‘Eﬁ (4.61)

and can be adjusted by varying the filter gain k.[Ref. 51.]
H. SUMMARY AND CONCLUSIONS

Each of the types of filters reviewed above has its own sets of strengths and
weaknesses. They differ in computational complexity, memory requirements, and

applicability to discrete implementation on digital computers. They also differ in the
assumptions on which the underlying theory is based and applicability to problems



involving numerous variables to be estimated and multiple outputs. However, the primary
goal of each isto produce the best possible estimate for the variable or variables of interest
by minimizing errors due to noise corrupted measurements and inaccuracies due to sensor
limitations and the precision of the system.

Welner filter theory is applicable to filtering problems involving the separation of
one noiselike signal from another. The end result of solving an integral equation is a
weighting function which describes the relationship between input and output. Weiner
filter theory is completely based upon the assumption that spectral characteristics of both
the signal and noise are known and uses only this information to minimize the mean square
error. However, in many practical applications the auto and crosscorrelation functions may
not be known. The scalar formulation of Weiner filter theory makes it difficult to apply to
problemsinvolving multipleinputs and outputs. Though there may be multipleinputs, only
a single scalar output may be estimated. Perhaps the greatest obstacle to the discrete
implementation of aWiener filter on adigital computer isthe requirement that the solution
be completely recalculated each time additional data in obtained. This requires that all
previous measurement data be stored in memory and be available for recalculation of the
solution. Asthe size of the data set grows, inversion of the covariance matrix soon becomes
intractable.

Kaman filter theory, like Weiner filter theory assumes that the spectral
characteristics of each signal is completely specified. While Weiner filters use constant
gains, Kalman filters have time varying gains which are derived using the Kalman gain
matrix. The Kalman filter incorporates a physical process model as part of the estimation
process. Theend result isadifferential or difference equation relating input and output. The
matrix formulation of the Kalman filter makes it applicable to a large class of problems
involving multiple inputs and outputs as well as complex measurement and process
relationships. Discrete Kalman filters are particularly applicable to implementation on a
computer due to their recursive nature. It is not required that all previous datato be kept in

storage and reprocessed every time a new measurement is taken. Only the most recent

78



estimate and measurement are needed to arrive at anew estimate of the state of the system.
Kaman filter theory does assume that all noise sources are white and Gaussian. However,
it can be proved that the sum of multiple colored noise sources will result in a Gaussian
distribution and thus a Kalman filter will still perform well even when the assumptions are
not true [Ref. 49.]. The traditional Kalman filter is based upon alinear process model and
measurement equation. Though thefilter can no longer be proved to be optimal, anonlinear
process model can be used in alinearized or extended Kalman filter. Formulation of such
aprocess model can be extremely difficult and time consuming. Other difficulties can arise
due to the additional computational demands of linearization.

Kaman filters are highly reliant on having complete measurement statistics and an
accurate process model. In the absence of either of these requirements, highly inaccurate
estimates of the system state can result [Ref. 14.]. Complementary Filters are not based
upon the assumption of having complete statistical data regarding the signals involved in
the problem and thus are often more robust. Most commonly they are designed to combine
multiple measurements of the same signal in a complementary fashion. The primary goal
continues to be minimization of the square of the expected error. Any appropriate
parameter optimization technigque can be used to solve the minimization problem. Often, a
complementary filter is tuned using empirical data obtained in experimental trials of the
system. The formulation of a complementary filter is usually more straightforward and
simpler than that of a Kalman filter. Though not optimal, a complementary filter can
produce estimates with an accuracy which is comparable to that of an Kalman filter, with
alower computational overhead and less development time.

It was stated at the beginning of this chapter that inertial/magnetic tracking of
human body segments is basically a navigation problem. In recent years, this type of
problem has most commonly been solved using acomplementary filter to integrate the data
from multiple complementary sensors. Foxlin has had success using a reduced order
extended Kaman filter in similar but simpler head tracking applications in which inertial
sensors were used [Ref. 27.]. Theideal solution to the body tracking problem would be an
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extended Kalman filter which incorporates adynamic model of the human muscul oskel etal
system, and measurement stati stics of the sensors. Dynamic modelsfor the muscul oskel etal
system have been studied for many years[Ref. 23.]. Such models are ideal for computer
simulations of articulated body motions, but they are currently too computationally
demanding for real-time applications such as human motion tracking. Thus, the challenge
would be to develop amodel that is adequate, but not overwhelmingly complex for motion
tracking applications. In the end however, it may be the case that a properly tuned
complementary filter will provide estimates with an accuracy that is comparable to those
made by an extended Kalman filter without the associated complexity and development
time. Thus, the prototype research described here makes use of a complementary filter
based upon a quaternion representation of orientation and leaves the development of an

extended Kalman filter for this application to future work [Ref. 48.].



V. AQUATERNIONATTITUDE FILTER

A. INTRODUCTION

Human body tracking using inertial sensors requires an attitude estimation filter
capable of tracking in al orientations. Singularities associated with Euler angles make them
unsuitable for use in body tracking applications. Quaternions provide an alternate method
of orientation representation that is more efficient than the use of rotation matrices and does
not involve the use of trigometric functions. In addition, quaternions do not suffer from the
singularities associated with Euler angles.

The optimality of Kalman filter theory is entirely based upon the assumption that
complete statistical data regarding the signals involved in the problem are known. In
practice this may not be true. Calculation of the Kalman gains requires the inversion of an
N X n matrix on each iteration step. In anonlinear problem such as human-body tracking, it
becomes necessary to use an extended Kalman filter. In this case it may be necessary to
compute Jocobiansto linearize both the measurement and process model equations at each
iteration step. In order to keep the problem tractable, it may also be necessary to simplify
the involved process model to the point where it is no longer accurate.

Nonlinear regression analysisisasimpler form of optimal | east-squares estimation.
In this method, a squared error criterion function relating the measurements to the state
estimate is minimized using aleast squares estimate of thetrue value of the state. The least
squares estimate can be derived using techniques such as Gauss-Newton and Newton
iteration. This chapter describes the theory, design, and anaysis of a complementary
attitude estimation filter based upon a quaternion representation of orientation and Gauss-

Newton iteration.

B. A QUATERNION ATTITUDE FILTER

Figure 10 is a block diagram of the complementary quaternion-based attitude

estimation filter used in this research. The filter takes inputs from three separate sensors.

81



Its output isaunit quaternion representation of the orientation of the tracked object, g. The
inputs are from athree-axis angular rate sensor (p, g, r ), athree-axis accel erometer (hy, h,,
h), and athree-axis magnetometer (by, b,, by).

In an error free, noiseless world, angular rate data could be processed to obtain a

rate quaternion using the relationship

1 1 165_1
g =93 5P 54 §r8= 5d "w (5.1)

where the indicated product is a quaternion product and the superscript ® means measured
in body coordinates (See Chapter 111 for a complete derivation of Eq. (5.1)). Single
integration of ¢ would produce a quaternion which describes orientation. However, in an
environment containing noise and errors, the output of angular rate sensors would tend to
drift over time. Thus, rate sensor data can be used to determine orientation only for
relatively short periods of time unless this orientation is continuously corrected using

“complementary” data from additional sensors.
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Figure 10: Quaternion-Based Attitude Filter From [Ref. 8.]
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Accelerometers measure the combination of forced linear acceleration and the

reaction force due to gravity. That is,

dmeasured = -9 (5.2
Since most real-life objects do not experience constant linear accel eration, when averaged
over time, accelerometers return a gravity vector or the local vertical. Thus, accelerometer
outputs are used to correct orientation relative to avertical axis. Similarly, magnetometers
measure the local magnetic field in body coordinates. This information is used to correct

rate sensor drift errorsin the horizontal plane.

1 Parameter Optimization

Combining filter inputs can be regarded as a parameter optimization problem with
the goal of minimizing modeling error. The closer the estimated orientation to the actual
orientation, the smaller the modeling error. Through iteration and cal cul ations based on the
magnitude and direction of modeling errors, orientation estimations become increasingly
accurate. Theoretically, when the modeling error is zero, the estimated orientation is equal
to the actual orientation.

The three orthogonally mounted accelerometers return an approximation to the
local vertical, the unit vector h. The magnetometer returns the direction of the local
magnetic field, b, also normalized to a unit vector. These two vector quantities expressed

in body coordinates as pure imaginary unit quaternions are

h =10 h h, h] b=1[0 b, b, by (5.3
Combining the vector parts of Ve(h) and Ve(b) from Eq. (5.3) producesa 6 x 1
measurement vector representing the actual measurements taken by the accelerometersand

magnetometers.

;70’ = [Ve(h), Ve(b)]T = [h;h,hsb;b,bo]T (5.4)
Gravity in earth coordinates is always down and can be expressed as the down unit

vector in quaternion form as



m=1[000 1] (5.5)
Thelocal magnetic field in earth coordinates, once determined and normalized, can

be expressed in unit quaternion form as

n=1[0 n, n, ng (5.6)
Eg. (5.5) and Eq. (5.6) are transformed from earth fixed coordinates to body
coordinates through quaternion multiplication with the estimated orientation, g by
[Ref. 92]

h=a'mg  b=g'ng (5.7
Combining the imaginary parts of Eqg. (5.7) into a single 6 x 1 computed

measurement vector produces

9(a) = [Ve(@tma), Ve(@na)l™ = [h; h,hyb,b,6,]" (5.8)

Eq. (5.4) represents the measured gravity vector and local magnetic field while Eq.

(5.8) isthe computed gravity vector and magnetic field found using Eq. (5.7) and is based
upon the best estimate of the current orientation. The difference between the actual

measurements and the computed measurement is the error vector or modeling error

&a) = Jo-Y(a) (5.9

In viewing Eq. (5.9), note that if 4 = q,,, iN Eg. (5.7) and there is no measurement noise,

the difference between the measured and computed values, &(q), will equal the zero vector.

The square of the filter modeling error istermed the criterion function

j (@ = &7(aé&@a) (5.20)
In the current version of the filter, j (a) is minimized using Gauss-Newton iteration [Ref.
59.]. This method is based on linearized least squares regression analysis where y, is

considered a vector of data pointsand ¥(g) isavector to be fitted to those points. The full

correction step to the measured rate quaternion is [Ref. 59.]



Dagr = [T XTe(@ = S7Xe(@ (5.11)
where the X matrix is defined as
&f:F% (5.12)
114;
It should be noted that if g is not constrained to unit length as depicted in Figure 10 and
discussed in Appendix B, a unique solution to the problem it no longer exists and the X

matrix will not be of full rank. In this case the regression matrix

s= XX (5.13)
will be singular and can not be inverted. The orthogonal quaternion theorem described later
in this chapter provides amethod of avoiding regression matrix singularities and improving
filter efficiency.

Eq. (5.11) treats mand n as if they are perfect measurements of forced linear
acceleration and the local magnetic field. In dealing with data corrupted by noise, a scalar

multiplier a isused.

DOpartial = a[xTx]_leé(Q) (5.19)
where o<a<1. In the absence of noise, a would be set to nearly unity. Very noisy or
inaccurate measurements would demand that the scalar multiplier a be given avalue closer

to zero. For a discrete approximation to a continuous time filter, referring to Figure 10

a = kCt (5.15)

Thus, for discrete time step integration, the next estimate of orientation would be

o ~ . 1.8 i N R N A
Oh+1 = qn+QQn wDt +a[X'X] X' e(@,) = @, +KkDtDg;;, + UmeasuredDt (516)

In the continuous time domain, Eq. (5.16) becomes

6] = 6]9+ qmeasured = |(Dqull"' C1measured (517)



2. Analysis

Figure 11 is a time domain signal flow graph (SFG)[Ref. 41.] of the linearized
quaternion attitude estimation filter. The inputs n; and n, are maneuver induced noise and
rate sensor noise respectively. The basis for linearization is the assumption that in the

absence of measurement noise the computation of cq,, isexact and therefore

DAtuil = Grrue =0 (5.18)
This assumption would be correct only if y depended linearly on g, which it does not.
Nevertheless, simulation studies [Ref. 51.] and physical experiments show that this
equation offers avery useful approximation for the selection of filter gains and predication
of filter response.

Application of Mason’'s formula [Ref. 41.] to Figure 11 produces

G _kvpl_plrkel) (5.19)
Quue  1+kp 1+kp
where p'! is the time integration operator [Ref. 41.]. Thus, with correct initial conditions,

in the absence of noise,

q = p_lqtrue = qlrue (520)
regardless of the value of k. This means that, under the linearization assumptions, Figure
10 is a complementary filter since, for all k, if n; and n, are zero, then g = q,, . -

M "2
| W

Gtrue Atrue e(ﬁ) quull f] q
— O -0 »! »! - ——

1 \ 1 k

Figure 11: Signal Flow Graph for Linearized System After [Ref. 54.]




a. Noise Response
Applying Mason’'s formula to noise disturbances n; and n, in Figure 11

produces the following low pass filter transfer functions.

-1

4. ke _ _k_ 521
N op4kpt PHK ( )
. -1

g_-_p __1

% Togl P (5.22)

Eq. (5.21) and Eq. (5.22) can be used to find an optimal k value in Eq. (5.17) based upon
power spectral density functions for both the noise signals and actual maneuvering
behavior of the tracked object. Unfortunately, thisinformation istypically not available, so
ad hoc “tuning” of k must usually performed based upon experimental results. [Ref. 96.]

b. Responseto Initial Condition Errors
Eg. (5.20) assumes that g has been correctly initialized. In order to
understand how an erroneous g approaches q,,, over time, consider the following static

sensor scenario. Suppose the sensor is mounted in a static fixture so that all Euler angles

are zero and thus

Gy = (1 0 0 0) (5.23)
Assume that the unit quaternion g isincorrect and is represented by

o = (1 d, d, d,) (5.24)
whereall ¢ are small quantities. In the absence of motion and noise, ¢, = 0 and both n;

and n, equal zero. Therefore, Figure 11 can be simplified to Figure 12 as follows:

Atrue D g Gl
o o —
i 1
1 L p
-1

Figure 12: Simplified SFG For Static Testing With Zero Noise After [Ref. 55.]
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Based on Figure 12, the initial valuefor cq,,, IS

G = Gyye—do = (0 —dy —dy, —d,) (5.25)
Since the first component of g, in Eq. (5.25) will always be zero, it can be assumed that it

will remained unchanged and ¢ will take on the form

G=@1 %92 (5.26)
Figure 13 isaLaplace transform SFG for the scalar . From the application

of Mason’sformulait follows that

Xs) o st _ 1 (5.27)

Employing the inverse Laplace transform produces the result

(1) = d et (5.28)
Equivaent results apply for gty and zt) . This implies that any transient errors in g
resulting from erroneous initialization will persist for a time inversely proportional to k.

Specifically

tog = i (5.29)
and for any disturbance ¢, , the resulting errors in the x component of g will be
e, (t) = de™ oo (5.30)

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the

time t = t,,. Similar results apply to ¢, and o, .

dy

v
\
\_1

Figure 13: Transform Domain SFG For X(s) After [Ref. 55]




C. Choosing the Feedback gain value
If kistoo large, the discrete time filter may become unstable or too much

maneuver induced error will appear in g. From Eq. (5.29), it can be seen that k should not

be too small if the filter isto converge in areasonable time period. On the other hand, t,,

must be larger than the maneuver time constant, t in order to adequately suppress

maneuver !

maneuver noise. Thisresult leads to the qualitative requirement

t (5.31)

maneuver € t Dq

or

gt k (5.32)

The maximum value for k can be quantitatively established through a
geometric series[Ref. 7.]. Figure 14 isablock diagram of the linearized quaternion attitude

filter. From this diagram, it can be observed that the estimated rate quaternion is given by

§=d+q, (5.33)
Discretization of the filter replaces the integral with the summation

n

& db ql(nDt)Dt (5.34)
1=0
where
Go, = Gc(0), G, = G(1DY), G, = G, (2D1), % (5.35)
+ -
q ﬂ%
k
Ge
+ 1+ . .
q > 0 i

o

Figure 14: Block Diagram Of Time Domain Linearized Quaternion Attitude Filter



Let g, = 0 and assume there is no angular rate input; that is q = 0. If an

error exists then

qO =a(0* Otrue = 0

Using Euler integration, the first updated estimate is given by

g, = qO+ quDt

Sinceg=0

Go = —kEg

Substituting into EQ. (5.37) produces

G, = Gp+ (-kCy)Dt = (1-kDt)q,

For the second updated estimate

Again, sinceq = 0

g, = k€, = —k(1-KkCt)q,

Substituting into EQ. (5.40) produces

8 = (1—kDt)go+ —k(1—KDt)goDt = ¥ = fo(1—kDt)>

In general, the nth estimate is given by the geometric series equation

8, = Go(1—kDt)"

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

Based on thisresult, it can be observed that for values of 0 £ kot < 2 the geometric series will

converge since the absolute value of 1-kct will belessthan unity. The maximum value for

k for which the filter can expected to be stable is

~
I
Din

max

(5.44)



Based on Eq. (5.43) and Eq. (5.14), when working with perfect noiseless data, valuesfor k
greater than E)l't can be expected to cause correction “overshoots’ and oscillations in the

attitude estimate.

The above discussion provides guidelines for the selection of “reasonable”
values for k and ct. With power spectral density functions for g, Ny and n,, a Kalman
filtering approach [Ref. 14.] could be used for this problem. In the absence of such
statistical information, gain values may be sel ected through experimental “tweaking” of the

scalar gain, k, in laboratory studies.

3. Reduced Order Filter

The filter derivation discussed above is correct if g is constrained to be of unit
length. Constraining to unit length also alows formulation of amore efficient algorithm. If
it is assumed that the computed measurement vector, y(¢), depends linearly on q, the

criterion function can be minimized using the relation

Gnew = Gola + g (5.45)
where Dg can be thought of as either a correction to estimated orientation or an update to
the old estimate to produce the new estimate. Eq. (5.11) gives the Gauss-Newton iteration
formulafor Dg as

DA =[] X'e@

Iterative application and recal culation of this correction will lead to convergence for small
Dq under known conditions [Ref. 60.].

It should be noted that if g,,4 iISapositivereal unit quaternion, the sumin Eqg. (5.45)
will not in general be a unit quaternion. However, in order to ensure that a unique solution
existsfor g, it should be kept as near to the surface of afour dimensional unit hemisphere
as possible. Thiswill be the case if Dg is small and is tangent to the surface of the sphere
and thus orthogonal to g.

Taking the dot product of g with itself produces
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(a+0q) - (q+Cq) = q- q+2(q- Cq) +Dq- Lq = 1+2(q- Cq) + O(Cq’) (5.46)
If Dqisorthogonal to g, the middie term on the right hand side is zero. The square of the
length of g isthus given by

lq+Dgl2 = 1+0(Dq’) (5.47)
which varies from unity by an order Dg? term.

It is shown below that for any quaternion and any three dimensional vector in
guaternion form, the quaternion product of the quaternion and the vector will result in a
vector which is orthogonal to the original quaternion. Furthermore, given any pair of
guaternionsit is possible to express the one as the product of a unique vector and the other

quaternion.

a. Orthogonal Quaternion Theorem
Let p and g be any two quaternions. Then p is orthogonal to g if and only if

p is the quaternion product of q and a unique vector v (real part equal to zero) wherev is

given by
v=qp (5.48)
Proof:
Let g be any quaternion given by
do
g=|" (5.49)
P
43

and let v be any vector in quaternion form which is given by

(5.50)

N < X O

Taking the quaternion product of g and v produces
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Qv = (-0qx—0,yY—052)
+1i(qeX—0qgy + 0,2)
+j(ggX +0yy—0,2)

+k(-0x + g,y + qy2)

—qlx—qzy—q3z
GoX~Ga¥ *+ G2 (5.51)
Q3X+ qoy_qlz
—O,X+ qpy + 0z
The dot product of q and the result from Eq. (5.51) is
(@v)-a=q- (qv)
qo _qlx_qzy_Q3Z
_ |9, [YX—0gy T 02
qz Q3X+ qoy_qlz
ds X+ gyt 4yz
= Qg(= 0y =0,y — d32) + 0, (0pX — Oy + 0,2)
+ qz(q3X+ qoy_ qlz) + Q3(_q2X+ qu+ qoz)
= - qulx - quzy - qoq32+ qlqOX_ Q1Q3y + q1q22
+ 00X+ 000y — 00, Z— O30 X+ G0,y + GgGZ = O (5.52)
Thus proving that g and qv are orthogonal for any v.
Now, suppose p and g are quaternions such that
p=qv (5.53)

for some vector v. Then multiplying both sides of Eq. (5.53) by theinverse of g will produce

a'p=v (5.54)
Substitution of the v given by Eq. (5.54) into Eq. (5.53) resultsin

p=av=0(q"p) = (aq )p = p (5.55)
Thusgiven any pair of orthogonal quaternions, one can be written asthe quaternion product

of the other and a unique vector.



Q.ED.

According to the above theorem it follows that Dg can be written in the form

Cq = qv (5.56)

where v is avector in quaternion form such as
v = (5.57)

and Dg will be orthogonal to g. Using a Taylor series approximation, the computed
measurement vector given by Eqg. (5.8) can be approximated for orthogona Dq by

3(a+Da) (@) + gDa = J(a) + g (v (5.58)
Consequently, as v changes, using the chain rule for partial derivatives,

& (|0

> 3 ¢ |7
W_ W gt (5.59)

e |olo

where X isthe gradient of ywith respect q and is derived in Appendix B. Similarly

& |0|0
. W & |of (5.60)
v a G 1_ .
e (0|g
and
aeo?
Ws g, ¢ |of
e (1|

Equations (5.59), (5.60), and (5.61) can be used to define anew 6 x 3 gradient matrix in

which each of the equations forms a column of the matrix

hid

fivy|fiv,

X, = [ﬂ 119} (5.62)

s




This matrix linearizes y(q+ bq) with respect to orthogonal Dg and can therefore be used to

compute an optimal Dv as

Dv = [XVTXV]_lvae(Q) (5.63)

from which it follows that the optimal Dq under the linearity assumptionsis

Dq = q(0, Dv) (5.64)
Evaluation of Eq. (5.63) requiresinversion of a3 x 3 matrix rather than inversion of the 4

x 4 X matrix used in Eg. (5.11). Note that normalization of g to unit quaternion form will

still be required to correct the O(Dg?) effectsin Eq. (5.47).

4, Differential Weighting of Sensor Data

Due to noise and interference from el ectromagnetic sources, magnetometer datais
not as reliable as that produced by accelerometers being used to sense gravity. Differential
weighting of sensor data allowslessweight or confidence to be placed in the magnetometer
data relative to that of the accelerometers. This approach makes sense since small drift
errors in the horizontal plane are acceptable in most human body tracking applications as
long asthey are gradual and transient. The effects of noise on the data from a sensor can be
expressed using aweighting factor. This factor can be used to implement aweighted |east-
squares regression analysis algorithm.

If it is assumed that each input parameter is affected by an uncorrellated noise

source, the weighted modeling error can be written

T
é(Q) - h]_—h:L h2_h2 h3—h3 bl_bl b2_b2 b3_b3 (565)
Wl WZ W3 W4 W5 W6

where w; is aweighting factor. If it is further assumed that the noise magnitude does not

differ for sensors of the same type, the weighted modeling error may be rewritten as
T
N ~ ~ A W, -~ W, -~ Wy, ~
&@) = lhl—hl Rz—h, h3—h, sz(bl—bl) er)(bz—bz) VVZ(bg—bg)] (5.66)
T
= [ﬁl—hl Ro—hy R —hg 1 (B1—by) 1 (Bo—by) r(63—b3):| (5.67)
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where wy, is aweighting factor for accelerometer data and w, is aweighting factor for the

magnetometers. The ratio r controls the relative weight placed on the accelerometer and
magnetometer data and it will generally be between zero and one. Increasing r above unity
will cause more weight to placed on the magnetometer data. Decreasing it below one
indicates that there is more confidence in accelerometer data. In this case the weighted

criterion function becomes

i = (i=h)’ + (Ro—hy)’ +(ha—hy) + 1 (Bi—by) +1 (Ba=by) +1 (Bs—by)° (5.68)
= ((hy®=2Rshy +h,%) + Yo+ (r®hs’ —2r 2Bebs +1 °b,?)) (5.69)
Using Eq. (5.69) to derivethe error criterion function, resultsin amodified X matrix

given by ) }
16 TG, M6, T4,
16 TG, M6, T4,
X = ﬂilo ﬂ?l ﬂ‘jz ﬂ(ja (5.70)
rzﬂ__bl rzﬂ__bl rz@ r21lb_1
fa, T4, T4, 16,
ofby oM, 2%y 2%bs
fa, T4, T4, 16,
| oo far Ta;  fag

5. Reduced Rate Drift Correction

The upper loop of Figure 10 serves to correct rate sensor drift and is essentialy a
low-pass filter. While an attitude update using rate sensor inputs only requires aquaternion
multiplication and a single integration, calculating a drift correction requires a matrix
inversion and numerous scalar multiplications. If the drift time constant of the rate sensors
islong enough and the noise level is low, a drift correction may not be required on every
filter cycle.

Eliminating the need to perform drift calculation on every filter cycle leads to a

significant reduction in computational costs of running the filter. This reduction may be



taken advantage of in two different ways. Reducing the number of drift corrections can be
used to increase the overall update rate of afilter. This may result in areduction in lag and
increase in the overall accuracy and resolution of the system. Increasing the drift correction
interval can also be used to reduce the number of cal culations associated with an individual

filter. In a system in which a single processor is being used to run multiple filters, this
reduction effectively increases the number of filters which may be operated. For instance
on asystem which is only capable of running threefilters at 100 Hz and performing a drift
correction on every filter cycle, it may be possible to run a much larger number of filters
by sequencing the drift corrections so that they are only performed for a subset of three of

the filters on any given update of posture. If the filter time constant is one second, it may
be possible to operate 100 filters at 100 Hz simultaneously with each filter only performing

adrift correction after every 100 update cycles.

C. FILTER SIMULATION

Linear analysis provides a method of estimating the response of the filter if the
initial orientation estimate, g, isinaccurate. Such analysisimplies that any transient errors
in g resulting from erroneous initialization will persist for atime inversely proportional to
thek used in Eq. (5.14). Specifically, the time constant t is given by Eq. (5.29) as

_1
tog = i

Let ¢, be asmall quantity representing an initial error in the x component of g. From Eq.

(5.30) theresulting errorsin the x component of g over time will be given by

Uog

g(t) = de"

Thus, it can be predicted that any error will be reduced to 37% of the initial value by the
time t = t,,. Similar results apply to ¢, and o, .

Figure 15 is an example plot of simulation results obtained from an earlier version

of thefilter [Ref. 6.]. Since these nonlinear simulation results are in close agreement with
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linear theory, the validity and value of linearization is established. White noise simulation

shows nhoise reduces accuracy, but the filter still works well.

)
g
30 D.I1 D.I2 D.I3 D.Ifl D.IS D.IB D.I? D.IB D.I9 1
Time (seconds)
Figure 15: Simulated Nonlinear Filter Response, 10 Degree Offset, a=0.1, Dt=0.1
From [Ref. 6.]

Simulation tests performed using noiseless synthetic data and a random starting
point werereported in [Ref. 51.] In these trials no failures to converge were observed after
ten cycles of Gauss-Newton iteration. Further simulations were conducted in [Ref. 51.] to
examine the convergence properties of the filter. In these experiments, the rms (root mean
square) accuracy of Gauss-Newton iteration was evaluated as a function of max-noise and
the required number of cycles of iteration to achieve convergence. These results confirmed
that even with noise levels exceeding 10%, the length of the vector error in g remained at

only approximately 80% of the maximum data component noise level.

D. SUMMARY

This chapter describes a quaternion based complementary attitude filter. The filter
is designed to accept sensor data from a nine-axis MARG sensor and produce a quaternion
representation of the orientation of atracked rigid body. Due to the use of quaternions, the
algorithm described isinherently free from orientation singularities. Continuous correction

of drift regardless of the type of motion being tracked is achieved using Gauss-Newton



iteration. This property of thefilter makesit particularly applicable to human body tracking
applications which commonly include short cyclic periods of high linear acceleration.

The agorithm relies upon the Orthogonal Quaternion Theorem. The theorem both
resolves the singularity problem of Gauss-Newton iteration applied to quaternion
orientation tracking and reduces the size of the associated regression matrix from 4 x 4 to
3 x 3. Thisreduction resultsin asignificant computational advantage since the inversion of
the regression matrix is probably the most time consuming part of the drift correction
process. This improvement is especially important when simultaneously tracking a large
number of human limb segments or when implementing the algorithm on imbedded
M Croprocessors.

The described algorithm al so includestwo scalar gain factorsthat allow “tuning” of
the filter to fit a particular tracking situation. Guidelines for choosing values for these
parameters are provided, but it is believed that final selection of gainsis best accomplished
by adjustment during the course of an experiment. It is conjectured that periods between
drift corrections can be extended resulting in either a higher update rate or the ability to
implement a greater number of filters simultaneously using less computing power.

The quaternion attitude filter fulfills the need for an efficient and robust algorithm
for sourceless real-time tracking of human limb segments without the computational
complexity of previous Euler angle based algorithms designed for head tracking or ship and

aircraft navigation systems.
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VI. IMPLEMENTATION OF INERTIAL AND MAGNETIC

A.

TRACKING OF HUMAN LIMB SEGMENTS

INTRODUCTION

This chapter describes pertinent details of an implementation of a prototype system

for tracking human body motions using magnetic, angular rate, and gravity sensors. The

central data processing algorithm is the quaternion attitude filter described in the previous

chapter. The goal of the system is to demonstrate the practicality and robustness of inertial

and magnetic orientation tracking as well as to provide atest-bed for further experiments

and future system development. Several features are considered imperative if these goals

are to be meet. Among these are

Orientation tracking of any three or more human limb segments using nine-
axiSMARG sensors

Sufficient dynamic response and update rate (100 HZ or better) to capture
faster human body motions

Ability to change quaternion filter operating parameters while the systemisin
operation

Calibration of individual sensors without the use of any specialized equipment
Simplified human kinematic model based entirely on quaternions capable of
accepting orientation parameters relative to an earth fixed reference framein
guaternion form

Automatic accounting for the peculiarities related to the mounting of a sensor
on an associated limb segment

Adjustable human model to take into account anthropometric variations
between different individuals

Creation of datafiles for recording data relating to posture estimation as well
as filter operation

Archiving of system configurations for retrieval and further experimentation
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Figure 16 is a diagram of the prototype system. Depicted are three body-mounted
MARG sensors outputting analog signals to three 1/0 connection boards. The output from
each connection board is digitized by an associated A/D converter card. The cards
themselves are mounted in a standard Wintel desktop computer. All data processing and
rendering cal culations are performed by software running on this single processor machine.
The display monitor provides a means of visually displaying the estimated posture of the
tracked individual. The principal components of the system are discussed in detail in the

following sections.

0

Body Mairted 5 emsos

Display
Morntor

A nalog Cratpat

Figure 16: Prototypelnertial and M agnetic Body Tracking
System

B. PROTOTYPE MARG SENSORS

The prototype MARG sensors used in thisresearch were custom built using off-the-
shelf, low cost components. No significant attempt was made to produce an extremely
small sensor. Ease of use and construction were the overriding factors affecting sensor
design. These sensor components are housed in a lightweight case constructed of birch

wood to prevent shock damage and to provide a stable temperature environment for therate
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sensors (Figure 17). The case material was also chosen to take advantage of its lack of
magnetic properties.

The MARG sensors units are designed to combine three mutually orthogonal
magnetometers, three mutualy orthogona angular rate sensors, and three mutually
orthogonal accelerometersinto a single compact package. To track the entire human body,
approximately fifteen of these nine-axis units would be required. One sensor would be
attached to each limb segment to be tracked. The exact number of sensors needed would
depend upon the desired motion tracking detail to be captured. Three such sensors were
used in the system described in this research.

Each sensor package

measures 10.1 x 55 x 2.5 cm. The __
analog output of the sensor is
connected to a breakout header via a

thin VGA monitor cable. Output

range is 0-5 vdc. The power |, Crosshgw

b
I
Al B

L]
LLL T

requirement of the sensorsis 12 vdc at
approximately 50 milliamperes. The

primary sensing components are a

Crossbow CXL04AM3 triaxial Figure 17: Proto[t%péﬁ '\éllé]RG Sensor From

accelerometer [Ref. 18.], aHoneywell

HMC2003 3-axis magnetometer [Ref. 39.] and three Tokin CG-16D series miniature
angular rate sensors mounted in an orthogonal configuration [Ref. 84.]. The individual
components are integrated using a single integrated circuit board with the accelerometers
mounted separately. The circuit provides a set/reset circuit capability for the
magnetometers and allows manual adjustment of magnetometer null points. Rate sensor
output voltage is amplified by afactor of five to attenuate rate sensor oscillator noise. All
three sensorswere fabricated by McKinney Technology of Prunedale, California[Ref. 61.].
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1. Sensor Components

a. Crossbhow CXL04M3 Triaxial Accelerometer

The CXL04M3 triaxia accelerometer package contains three silicon
micromachined Analog Devices ADXLO05 accelerometers [Ref. 3.] mounted in an
orthogonal configuration. The ADXLO5 is aforce balanced capacitive accel erometer with
capability to measure dc accelerations which aretypical of aninertial force such as gravity.
When oriented to the earth’ s gravity, x axis pointing up, the accel erometer will experience
apositive 1g acceleration. Full scale output is selectable from +/- 1 to +/- 5g. Dimensions
of the triaxial package are approximately 25 x 25 x 19mm. Individual accelerometer cans
have a diameter of 9.4mm and a height of 4.7 mm. Shock survival is 1000g when
unpowered, 500g powered. Additional pertinent characteristics of the CXL04M3 are given
inTable 1.

Characteristic Range Units
Zero g Output 25+/-0.1 Volts
Output Voltage 0-5 Volts
Sensitivity 500 +/- 5% mV/g
Noise 5 mg rms
Bandwidth DC-100 Hz
Temperature Range | -40to +85 C
Supply Voltage 5+/-0.25 vVDC
Supply Current 24 mA

Table 1: CXL04M3 Triaxial Accelerometer Specifications After [Ref. 18.]

b. Tokin CG-16D Series Rate Gyros

The Tokin CG-16D is a ceramic angular rate sensor composed of a single

piezoel ectric ceramic column printed with electrodes[Ref. 84.]. It isprimarily designed for
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use as a vibratory gyroscope in vehicle navigation systems. The advertised maximum
detectable angular rate is given as +/- 90 degrees per sec. Though the response may no
longer be linear, higher rates have been observed in experiments. Sensor dimensions are
given as 8 x 8 x 20 mm. Shock survival is 300g. Three CG-16D angular rate sensors are
mounted in an orthogonal configuration inside each MARG sensor. Due to the unstable
characteristics of the sensors under temperature changes, internal MARG rate sensor
circuitry amplifies the sensor output and performs temperature compensation to maintain
null output voltage at a constant value. Additional pertinent characteristics of the CG-16D

aregivenin Table 2.

Characteristic Range Units
Reference Voltage 24 Volts
Output Voltage 0-5 Volts
Sengitivity 11+/-20% | mV/deg./sec.
Output Voltage at zero angular +/ 300 mVolts
rate (25 degrees C)
Output Voltage at zero angular +/-500 mVolts
rate (any Temp.)
Bandwidth 100 Hz
Temperature Range -5t0+76 C
Supply Voltage 5 vDC
Supply Current 7 mA

Table 2: CG-16D Ceramic Rate Gyro Specifications After [Ref. 84.]

C. Honeywell HMC2003 3-Axis Magnetometer

The Honeywell HM C2003 isa solid state 3-axis magnetometer contained in
a 20-pin hybrid DIP package [Ref. 39.]. The local magnetic field is measured by three
permalloy magnetoresistive (MR) Honeywell HMC1001/2 microcircuits which convert

magnetic fields to a differential output voltage. The transducer is configured as a
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magnetoresistive Wheatstone bridge. Two “straps’, OFFSET and Set/Reset, eliminate the
need for external coils. DIP footprint is approximately 25 x 19 mm. Shock survival is 100g.
Pertinent characteristics of the CG-HMC2003 are givenin Table 3.

Characteristic Range Units
Field Range -2t02 gauss
Output Voltage 05-45 Volts
Null Field Output 25 Volts
Sensitivity 1 V/gauss
Bandwidth 1000 Hz
Temperature Range -40 to +85 C
Supply Voltage 6-15 VDC
Supply Current 20 mA

Table 3: Honeywell HMC2003 Three-Axis Magnetic Sensor Hybrid
Specifications After [Ref. 39.]

2. Magnetometer Set/Reset

Early system testing was hampered due to saturation of the MARG sensor
magnetometers by small magnetic fields. Saturation produced flips or reversalsresultingin
changes in the sensor characteristics. Once saturated, the lack of a built-in reset made it
difficult to restore the magnetic sensors to a usable condition. Only through repeated
exposure to various magnetic fields and trail and error iterations could the sensors be
returned to a functional condition. Often, the magnetometer null points had changed
following these procedures making it necessary to recalibrate the sensor.

Manufacturers literature states that HMC1001/2 magnetometer saturation occurs
due to the influence of a strong magnetic field in excess of 30 gauss which can cause the
polarity of the MR film magnetization to flip [Ref. 15.]. In practice, changes in the

magnetometer characteristics were found to occur in the presence of weaker fields such as
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those caused by exposure to metal scissors or cell-phones. Following such an upset field, a
strong restoring magnetic field must be momentarily applied to restore, or set, the sensor
characteristics. The effect is commonly referred to as applying a set or reset pulse. The
Honeywell HMC1001/2 incorporates a patented on-chip strap for performing the re-
magnetization electrically. This flipping may be performed manually or automatically at
various time intervals.[Ref. 15.]

The prototype MARG sensors used in this research incorporate a manual set/reset
circuit to electrically restore the magnetometers to proper operation. Activation of the
circuit isaccomplished using a sensor mounted button. The associated circuit isdepicted in
Figure 18. The purpose of the circuit isto set or reset the permalloy film contained in the
individual magnetometers by applying a current pulse of 3-4 amps for approximately 20-

50 nsec.

3. Analog to Digital Conversion

Analog sensor output signals must be converted to digital form in order to perform
processing using adigital computer. In this research, analog to digital conversion of sensor
output voltages was compl eted external to the sensors using one National Instruments PCI-
MIO-16XE-50 data acquisition card for each MARG sensor. Each data acquisition card
was inserted into a PCI slot on the mother board of the data processing computer. The PCI-
MIO-16XE-50 is a 16-bit A/D converter capable of sampling either 16 single-ended or 8
double-ended analog input channels. Maximum sampling rate is 20K samples/sec. Input
voltagerangesare 0 - 10V in single ended mode and -10 to 10V in double sided mode. The
boards are completely Plug and Play, multifunction analog, digital, and timing I/O boards
for PCl bus computers. [Ref. 69.] Sensor to board connection was completed using a

National Instruments SCB68 type I/O connection board.[Ref. 68.]

4. Data Processing

The prototype inertial and magnetic body tracking system depicted in Figure 16

uses an Intel based desktop computer to complete all data processing and rendering
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Figure 18: MARG Sensor Magnetometer Set/Reset Circuit Schematic From [Ref.
functions. The computer was manufactured by Micron Electronics, Inc. Thesingleinstalled
CPU isan 866 MHz Intel Pentium I11. The machine contains 256 MB of RAM. Hardware
rendering is performed by aNVIDIA GeForce2 GTS video card. The Microsoft Windows
2000 operating system is used in order to achieve accurate timing of body tracking system

events.

C. SYSTEM SOFTWARE

The system software implements the estimation as well as calibration algorithms
which make possible tracking of human body segments using MARG sensors. Drift
correction is performed using the reduced order form of Gauss-Newton iteration described

in the previous chapter. Facilities are included to allow performance of experimentsrelated
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to differential weighting of magnetometer and accelerometer data, variation of intervals
between drift corrections, and adjustment of thefilter gains. A sensor calibration algorithm
allows system users to calibrate individual sensors by subjecting them to a series of six 90
or 180 degree rotations followed by two 360 degree rotations oriented with respect to the
local magnetic field.

In addition, the system software includes a fully articulated human model based
entirely on quaternion/vector pairs. No rotation matrices are used to position the model.
Limb segments are oriented independently of one another and positioned through the
addition of limb associated vectors. Limb segment lengths are fully adjustable to allow
compensation for variation in the relative dimensions of limb segments for different
individuals. The model is positioned and oriented relative to a z axis down coordinate
system [Ref. 52.].

The system software is fully serialized allowing for archival of experimental
configurations with varying model dimensions and differing filter parameter settings.
Facilities are provided for creating files containing data related to full body posture
estimation or data related to the operation of an individual filter object.

The body tracking software for this research was designed using object oriented
techniques. All code was written using the Microsoft Visual C++ Integrated Devel opment
Environment (IDE) and compiled under the Visual C++ 6.0 compiler. The applicationisa
Single Document Interface (SDI) which follows the Microsoft Foundation Class (MFC)
Document/View architecture and application framework conventions. The code is single
threaded. Estimation and rendering events are window system timer driven at 100 Hz and
25 Hz respectively.

Figure 19 isasimplified class diagram of the body tracking software. Minor dialog
box classes and other user interface classes have been omitted. For clarity, class methods
and data members are not individually listed. In viewing the figure, the classes can be
separated into two groups, those under the application document class,

CBodyTrackingDoc, and those under the application view class, CBodyTrackingView.
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The classes under the application document class, CBodyTrackingDoc, are related
to the generation and saving of data as well as the system configuration. These classes
include CAtoDConverter which retrieves sensor data from the system hardware, CSampler
which formats data for submission to the quaternion filter, CQuatAttFilter which
implements the quaternion based attitude filter algorithm and CHumanModel Settings
which holds data related to the posture and configuration of the human model.
CSensorCalibrater  implements the MARG sensor calibration  algorithm.
CQuaternionEstimator serves as a container class to facilitate object communication.
CLimbData objects are used to hold the current length and orientation data of individual
limb segments. CHumanModelDialog and CSensor SettingDialog objects allow user
adjustment of application settings. All document related classes are serialized.

The classes under the application view class, CBodyTrackingView are responsible
for providing a view of the data of the application. These data are contained in the
document. In the case of the body tracking system, all data pertains to the orientation,
location, and size of human model limb segments. The CHumanModel class implements a
human model using objects of typeCLimbSegment. The number of CLimbSegment objects
used is determined by the number of linksin the model.

Figure 20 depicts the major data flow paths between the instantiated objects of the
system. The primary input to the system is nine-axis MARG sensor data. The state of the
system may aso be affected by the user through the use of dialog boxes. System outputs
arenot depicted. Theseinclude visual display of the posture of the articulated human model
and the creation of data files for post-processing or plotting. MARG sensor data is only
received by a CSensorCalibrater object when the associated sensor is being calibrated.

The following sections describe the key classes and algorithms implemented in

more detail.

111



we Jbe1q mo|4 eregasuesu|sse|D 0Z ainbi4

‘5108 g0 wesmag seouspundse 1100 aU0 B (] OSTRG
0 ATI0 S UMISSE PO a5 TLAIAT0 58U ) DY -9 T
FRIRALO Q0T O
(ogeIIEa Qg
Bunng) e g oS pararg
ISR PR IR 858 J -0 sy o
558 J-m0°] S sicmem T TEs )
" apa g pum : aEIE PR
FEREORSEED ST AOSTR s ) SN s g

aaTta HMMWMM%FEO PR RIS ! 3 _T
L OTe NS WE s TR e n
puE anauSe it 7
7 FLIRTENDD SIRRWRIE d
Sugesad o pue
SUOTIRRIY SUTRLD JT
ORI IO
PaEums
seurddey msu o
TOR WS HUOTLRIBID PUR ST ISUA W]
NN TeROTA] 398 ]
Jurs wiEe o O
QU ReIRLL o SuDEUawI
BERWTTD mam2ag g
U8 WA g W)
. I
SU0TSTIAWT (] # 1 SUO ST W (]
PUE SUOTRIETIO PUR SUOTRIURIIO B0 R0 U WH D
s wEag g I 1 s wEag g
_
Ao uRL ) T _ S2UTa STapo e W H D
TramBa g G U 0STIE

U/

112



1 Quaternion Filter

The CQuatAttFilter class implements the reduced order quaternion attitude filter
described in Chapter V using the simplified X matrix derived in Appendix B. Thefilter is
complementary in form. Estimation error is minimized using Gauss-Newton iteration.
Options are included for performing differential weighting of sensor data and reduced rate
drift correction. Reduced rate drift correction may occur at specified time intervals or may
be applied to the system filter objects in a round-robin fashion in order to alow a greater
number of filters to operate at higher update rates. Matrix and quaternion mathematical
abstractions are handled using objects of the Matrix and Quaternion classes respectively.
With the exception of the measured rate quaternion, gDot (Eq. (5.1)), and the correction
quaternion gDotEpsilon (Eg. (5.14)), al quaternions are normalized to unit length. The
reference unit vectors, mandn, given by Eq. (5.5) and Eq. (5.6) are determined during the
calibration process and set by an associated object of the CSensorCalibrater class. Expected
input to the class is nine floating point numbers corresponding to the nine analog output
voltages of an associated MARG sensor. The angular rate values must be provided in
radians per second. Magnetometer and accelerometer readings are used to describe the
components of two directional vectors. Only the direction of these vectorsis of importance
and each is normalized to unit length. Thus, there is no need to follow any particular unit
convention

Once the filter object has been instantiated and estimation has begun, the
estimateRotation method serves as the primary interface to obtain updated orientation
estimates. The quaternion returned by this method represents the orientation relative to an
Earth-fixed reference frame of the associated MARG sensor block. Figure 21 depicts the
control logic flow and the step by step algorithm followed by this method. In viewing the
figure, it appearsthat the computational expense of cal culating drift corrections based upon
magnetometer and accel erometer datais much higher than merely updating the orientation
estimate using only rate sensor data. Thisisin fact the case. Derivation of the X matrix in

the “Calculate X Matrix” step requires the computation of multiple partial derivatives (See
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appendix B) and “Calculate full Delta v step” requires inversion of a 3 x 3 matrix. Filter

operating parameters and gains may be adjusted as the filter operates using the dialog
shown in Figure 22.

Perform orientation estimation step

v

et New Data
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Error
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Calculate X
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v

Return quaternion estimation of orientation

Figure 21: Orientation Estimation Flow Chart
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2. Sensor Calibration

The accuracy of the
orientation estimate produced by
the quaternion filter depends
heavily on the data which is input.
In order for the system to operate
properly, it is imperative that the
null point and scale factor of each
individual
MARG sensors be determined prior

component of the
to commencing limb tracking. The
null point and scale factor for each
component are found through a
calibration procedure. Practical use
of an inertial tracking system
requires that this procedure be both

efficient and accurate. Unless the
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Figure 22: Dialog For Manually Setting Filter
Parametersand Sensor Data Null Voltages and

characteristics of the sensors themselves change, calibration need only be accomplished

once. Magnetometer calibration may need to be accomplished more often due to changes

in the local magnetic field. Fortunately, it has been found that slight inaccuracies in the

magnetometer readings do not adversely affect the overall operation of the tracking system

to the same degree as inaccuracies in accelerometer and rate sensor data.

In the body tracking software, the nine digital values corresponding to a given

MARG sensor data sample are converted to positive floating point numbers. These

numbers are the single-sided voltages which are output by the sensors. Based upon this

assumption, each number is formatted for input into the quaternion filter by

formatted number = (voltage—null point) ~ scale factor”
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In practice the separate unitsterm is not necessary since it can be combined with the scale
factor and a scalar multiplication can thus be saved.

An individual linear accelerometer can be calibrated by placing it in a vertical
position to sense gravity in one direction and then turning it over to sense gravity in the

other. Half way between the readings taken is the null point.

| = (accel max;raccel min) (6.2

Multiplication of acorrect scale factor times the accelerometer output values will result in

accel nul

aproduct of 1 ginonedirection and -1 g in the other. This scale factor can be found using

(accel units)” 2
(accel max—accel min) (6.3)

Calibration of atriaxial accelerometer module could be accomplished in a manner similar

accel scale =

to that described above. The module would have to be placed in six different positions so
that each accelerometer could sense gravity along both its negative and positive axes.

An obvious method of magnetometer calibration is very similar to that used for
accelerometers. Instead of orienting each sensor relative to the gravity vector, each
magnetometer would have to be placed in a position in which it could sense the maximum
strength of the local magnetic field along both its negative and positive axes. This may be
accomplished by pointing the magnetometer axis toward the local north and recording the
maximum and minimum voltages as the magnetometer is rotated 360 degrees about an axis
oriented toward the east. Half way between the maximum and minimum readings obtained

isthe null point of the magnetometer.

mag null = (mag max42-mag min) (6.4)

Multiplication of a correct scale factor times the magnetometer output values should result

in a reading of approximately 0.6 gauss in one direction and -0.6 gauss in the other

depending upon the actual strength of the local magnetic field.

mag scale = (mag_units) ~ 2 (6.5
(mag max —mag min)
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Complete calibration of a three-axis magnetometer could thus be accomplished by
performing one such rotation for each individual sensor.

Determination of the null point of an angular rate sensor can be accomplished by
recording and averaging over some time period the output of a static sensor. Scale factors
are determined by integrating the output of angular rate sensor over time. If an angular rate
sensor is subjected to a known angle of rotation and its output is integrated during the
period of rotation, the correct scale factor will cause the result of that integration to equal
the angle of rotation. The scale factor for a rate sensor can therefore be determined

following a known rotation using

known rotation (6 6)
estimated rotation ’

where the estimated rotation term is the result of integrating the output of the sensor with

scale factor =

a scale factor of unity. In practica applications it may be desirable to make severa
estimates of the scale factor while putting the sensor through several known positive and
negative rotations and then averaging the results.

From the above, it is apparent that a MARG sensor could be completely calibrated
using a level nonmagnetic platform and a ssmple compass to indicate the direction of the
local magnetic field. The sensor could be calibrated by placing it in the six positions which
allow each accelerometer to sense gravitation acceleration in both the positive and negative
directions, subjecting each rate sensor to one or more known rotations and rotating the
MARG sensor in amanner such that maximum and minimum local magnetic field readings
can be obtained for each magnetometer. The following calibration algorithm is
implemented in the body tracking software as a state machine. The state machine includes
approximately 33 separate states. Rate sensor scale factors are calculated by averaging the
estimates produced by one negative and one positive rotation. The steps of the algorithm
listed below loosely correspond to the actual physical actions which a person doing the

calibration must perform upon the sensor.
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Finding Inertial Sensor Null Points and Scale Factors

1. Placethe sensor in a stationary position on aflat level nonmagnetic surface
with the positive z axis of the sensor pointing down. While the sensor isin this
position record the maximum voltage reading for the z-axis accelerometer as
accZMax. Set the rate sensor null points angXNull, angYNull and angZNull to
the rate sensor readings obtained while in this stationary position.

2. Rotate the sensor 90 degrees about the positive x-axis. While performing this

rotation integrate the output of the x-axis rate sensor (Figure 23).

Figure 23: Rotating Sensor 90 Degrees About Positive x-axis For Rate Calibration

3. Following completion of the rotation, record the maximum voltage reading for
the y-axis accelerometer as accYMax. Make afirst estimate of the x-axis rate
sensor scale factor, angScaleXOne, using Eg. (6.6).

4. Rotatethe sensor 180 degrees about the negative x-axis. While performing this
rotation integrate the output of the x-axis rate sensor.

5. Following completion of the rotation, record the minimum voltage reading for
the y-axis accel erometer as accYMin. Make a second estimate of thex-axisrate

sensor scale factor, angScaleXTwo, using Eq. (6.6). Set the scale factor for the
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x-axis rate sensor to the average of angScaleXOne and angScaleXTwo. Calcu-
late the null point for the y-axis accelerometer using Eq. (6.2).

6. Rotate the sensor 90 degrees about the positive z-axis. While performing this
rotation integrate the output of the z-axis rate sensor.

7. Following completion of the rotation, record the minimum voltage reading for
the x-axis accelerometer as accXMin. Make afirst estimate of the z-axis rate
sensor scale factor, angScaleZOne, using Eg. (6.6).

8. Rotatethe sensor 180 degrees about the negative z-axis. While performing this
rotation integrate the output of the z-axis rate sensor.

9. Following completion of the rotation, record the maximum voltage reading for
the x-axis accelerometer asaccXMax. Make a second estimate of the z-axisrate
sensor scale factor, angScaleZTwo, using Eg. (6.6). Set the scale factor for the
z-axis rate sensor to the average of angScaleZOne and angScaleZTwo. Calcu-
late the null point for the x-axis accelerometer using Eq. (6.2).

10. Rotate the sensor 90 degrees about the negative y-axis. While performing this
rotation integrate the output of the y-axis rate sensor.

11. Following completion of the rotation, record the minimum voltage reading for
the z-axis accelerometer asaccZMin. Make afirst estimate of the y-axis rate
sensor scale factor, angScaleYOne, using Eq. (6.6). Calculate the null point for
the z-axis accelerometer using Eg. (6.2).

12. Rotate the sensor 180 degrees about the positive y-axis. While performing this
rotation integrate the output of the y-axis rate sensor.

13. Following completion of the rotation, make a second estimate of the y-axisrate
sensor scale factor, angScaleYTwo, using Eqg. (6.6). Set the scale factor for the
y-axis rate sensor to the average of angScaleYOne and angScaleYTwo.

14. Calculate the accelerometer scale factors using Eq. (6.3).

Finding Magnetometer Maximum and Minimum Voltage Readings
15. Point the sensor x-axis north and rotate the sensor 360 degrees about they-axis.

Record the minimum and maximum voltages obtained from the x-axis magne-
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tometer during this rotation.

16. Point the sensor y-axis north and rotate the sensor 360 degrees about thex-axis.
Record the minimum and maximum voltages obtained from the y-axis and z-
axis magnetometers during this rotation.

17. Calculate the magnetometer null points using Eqg. (6.4). Calculate the magne-

tometer scale factors using Eg. (6.5).

Finding Gravity and M agnetic Reference Vectors
18. Place the sensor in the reference position with the positive x-axis pointing
toward magnetic north, positive y-axis east, and the positive z-axis pointing
down. While in this stationary position record the reading produced by the
magnetometers and accelerometers. Convert these readings using Eg. (6.1).
The six numbers produced correspond to the x, y, and z components of the two
reference vectors.

Once the sequence of rotations becomes familiar, the entire calibration procedure
can be performed in less than one minute. Figure 24 is shows a console display of
calibration results.

In the implementation described above each sensor is calibrated individually. The
algorithm described could be used to alow calibration of numerous sensors
simultaneously. In that case, MARG sensor calibration could be carried out by placing the
sensorsin aspecial apparatus before commencing body tracking. The apparatus could be a
simple box containing a bin for each sensor. The apparatus could then be put through the
same sequence of rotations and orientations as those used for an individual sensor.

Steps 15through 17 of the calibration procedure could be accomplished separately
to prepare the system to operate in a different magnetic environment. It also is possible to
change the orientation and magnitude of the rotations performed to allow magnetometer
calibration without completing of steps 15 and 16. The maximum and minimum voltage
output for each magnetometer could be determined if the rate sensor were calibrated

through one positive and one negative 180 degree rotation about the each axiswith the axis
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Figure 24: Console Display Of Sensor Calibration Results

orthogonal to the direction of thelocal magnetic field. This sequence was not used here due

to the position of the sensor data cable and the reset button on the MARG sensor housings.

3. Quaternion Human Body M odel

The quaternion human body model is designed to accept orientation data in
quaternion form relative to an earth-fixed reference frame. The model posture is set using
only vector addition and quaternion rotation. Vector addition determines the position of the
inboard end of each limb segment. Quaternion rotation of limb segment verticesis used to
set the limb segment attitude. This attitude is set independently of those to which it is
attached. No homogeneous transform matrices are used. The model includes no provisions
for joint constraint implementation. The number of polygons and vertices involved in the
model where kept to a small number in order to minimize the rendering demands on the
processor. The model is rendered in a north, east, down coordinate system. Figure 25 isa

wireframe rendering of the quaternion human body model.
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The orientation quaternions received by

the model may be mapped to any number of limb
segments. Thus it is possible, depending on the
mapping, to animate severa limb segments or
even the entire model using asingle sensor. If one

MARG sensor ismapped to all limb segments, the

model will rotate as a single unit with an
orientation corresponding to that of the applicable
sensor. Setting up a one to one correspondence
Il between individual sensors and the movable limb

segments of the model would allow realistic

tracking and rendering of full body postures. The

human model isonly avisual approximation of the
human body. It is not based detailed studies of
human anatomy. The lengths of the individual

Figure 25: Wireframe _
Rendering Of The Quaternion- ~ Segments of the model may however be adjusted

Based Human Model to match the anthropometric measurements of the
individual being tracked. Figure 26 depicts the dialog box used to adjust limb segment
lengths and to specify which MARG sensor corresponds to which limb segment or
segments. The peculiarities of the manner in which each sensor is attached to each limb
segment are accounted for through the use of an offset quaternion. The offset quaternions
are found using a calibration routine which requires the user to momentarily stand in a
reference position. Once the offset quaternions have be calculated, it is assumed that the
limb/sensor relationships remain constant.

The human model isimplemented inaCHumanModel class. It composed of objects
of the CLimbSegment class. CLimbSegment objects encapsulate the length, width, depth,

current orientation, offset quaternion and an associated trandation vector for each limb

segment. Climb segment objects could be used to model any articulated rigid-body. The
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CHumanModel class sets the limb segment dimensions and arranges them in a
configuration that is recognizable asahuman figure. In thisresearch, all limb segmentsare
rendered as a six-sided boxes. To draw figures with amore realistic visual appearance, the

limb segment could be extended to include a more complex geometry.
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Figure 26: Human Model Settings Dialog
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a. Setting Model Position and Posture

The vertices of anindividual limb segment are described relative to az-axis
down coordinate system which is attached to the inboard end of the segment. If the sensor
and limb segment axes are aligned, the orientation of an individual limb segment could be

set by applying to each vertex, v, the quaternion rotation

qsensorvqsensor (67)
where the unit quaternion g, 1S the estimated orientation produced by the filter

processing the sensor output data. In practice, due to the irregular shape of human limb
segments and other factors related to sensor mounting and attachment, it is difficult to
achieve perfect alignment between the sensor and limb segment axes. This misalignment
can be taken into account by performing an additional rotation using an offset quaternion.
The orientation of an individual limb segment must then be set by applying the rotation

sequence
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Gsensor 9or™ ot dsensor (6.8)
to each vertex, where qq is the offset quaternion for the limb of the vertex.

To set the position of aindividual limb segment it is necessary to find a
vector which describesthelocation of theinboard end of the limb segment. Once thisvector
is found the final position of each vertex can be calculated through addition of this vector
to the rotated coordinates of each vertex. Thus, the final position of alimb segment vertex

isgiven by

ptrans+ qsensorqoff\/qofquensor (69)

where py, ans IS @ 3-Space vector describing the location of inboard end of the limb. Using

homogeneous transformation matrices this final positioning could be accomplished by

TReensorRoftsetV (6.10)
where T is a homogenous transformation matrix describing the same trandation as v;, s
Reensor describes the orientation of the sensor relative to an earth-fixed reference frame and
Rofiset describes the same relation as qs. However, this calculation would be less efficient
and is not used in this research.

Theorigin of the human body model isthewaist. The position of the human
model could be set by tracking this location on the user and equating the resulting position
vector to the origin. (No position tracking is included in this research.) Attached to the
origin are the torso limb segment extending generally upward and the pelvislimb segment
withitslong axisorientated in adownward direction when thefigureisin anormal standing
position. Attached to the outboard end of the torso are theneck to which thehead is attached
and the shoulders which have a fixed relation to the torso. The outboard ends of the
shoulders are connected to theupper arms, to which are attached thelower arms and finally
the hands. The hips, upper legs, lower legs and feet are connected to the pelvisin asimilar

manner.
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Each limb segment has an associated translation vector, p, which extends
from the inboard to the outboard end of the segment. Once this vector has been oriented
using Eq. (6.8) the outboard end point can be used as the origin location for the coordinate
system of more distal segment attached to the end point. Limb segment origin positions are
calculated through the addition of translation vectors working from the waist towards the

body extremities as depicted in Figure 27. Each node represents alimb segment origin and

Torso Pelvis
Ptorso Prorso Ppelvi Ppelvis
Ptorso
I. Shoulder Neck ¢ Shoulder . Hip r. Hip
P1.shoul der Pneck Pr. shoulder Pr. hip Pr_hip
I.Upper Arm  Head  r.Upper Arm I. Upper Leg r. Upper Leg
P upper arm Pr. upper arm P, upper leg Pr. upper leg
|. Lower Arm r. Lower Arm |. Lower Leg r. Lower Leg
P1. lower arm Pr. lower arm Pr. 1ower leg Pr. 1ower leg
|. Hand r. Hand |. Foot r. Foot

Figure 27: Calculation Of Limb Segment Positions

each edge a trandation vector which has been rotated by an offset quaternion and a limb
orientation quaternion. Positions are determined by traversing the tree from the root to the
node of a particular limb segment origin and adding the vectors associated with each edge
in the path. For example, by traversing the displayed tree, it can be seen that the elbow or

connection point for the inboard end of the right lower arm limb segment is given by

pwaist + qtorsoqtorsooffptorsoqtorso offqtorso +

Ar shoulderdr shoulder offPr shoulder(jrshoulder off(jrshoulder +

(6.11)

qruparmqr up arm offPr up arm% up arm off Y up arm
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in the manner similar to Eq. (3.79). The origins for all other links are located iteratively
using the same method.

Actual positioning of the human model is carried out as atwo step process.
This separation allows rendering calculations to be spread over a wider time interval and
thus reduces the impact on the data filtering processes. In the first step the orientations of
al limb segments are set. This is accomplished by calling the setPosture method of the
CHumanModelClass. Filter produced orientations in quaternion form are passed in a

predetermined order as an input argument. This method is listed in Figure 28. The limb

/I Sets the orientation for each limb segment
void CHumanModel:: SetPosture(CLimbData * angleData)

for (inti =0;i < 16; i++) {

/I Set the orientation of the limb
m_trackedLimbJ[i]->SetOrientation(angleDatd[i].orientation);

} // end for

/I Set the orientations of the fixed segments
m_fixedLimb[L_HIP]->SetOrientation(angleData] PEL V1S].orientation);
m_fixedLimb[R_HIP]->SetOrientation(angleData] PEL VI S] .orientation);
m_fixedLimb[L_SHOUL DER]->SetOrientation(angleData] TORSO)] .orientation);
m_fixedLimb[R_SHOUL DER]->SetOrientation(angleData] TORSO] .orientation);

} // end SetPosture
Figure 28: The setPosture Method Of the CHumanModel Class

segments are positioned and rendered using the render Figure method. The location of the
waist or the origin of the human figure is passed as input argument. This vector as are all
vectors in the software is stored as a quaternion with the real part equal to zero. The

renderFigure method is listed in Figure 29.

b. Body Model Calibration

Dueto theirregular shape of actual human limb segments, it is not possible
to exactly align the axes of the attached a sensor with those of the limb. Sensor attachment

will vary from limb to limb and from individual to individual. Thus the use of off-line
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/I Calls draw functions to draw the human
void CHumanM odel::RenderFigure(const Quaternion & vecRoot)

/I Calculate joint locations
Quaternion waist = vecRoot;

/I Calculate upper body joint location vectors

Quaternion bodyNeck = waist + m_trackedLimb[TORSO]->GetTranslation();
Quaternion bodyHead = bodyNeck + m_trackedLimb[NECK]->GetTranslation();
Quaternion | Shoulder = bodyNeck + m_fixedLimb[L_SHOUL DER]->GetTransl ation();
Quaternion rShoulder = bodyNeck + m_fixedLimb[R_SHOULDER]->GetTranslation();
Quaternion |EIbow = IShoulder + m_trackedLimb[L_UP_ARM]->GetTranslation();
Quaternion rElbow = rShoulder + m_trackedLimb[R_UP_ARM]->GetTransl ation();
Quaternion IWrist = |[EIbow + m_trackedLimb[L_LOW_ARM]->GetTranslation();
Quaternion rWrist = rElbow + m_trackedLimb[R_LOW_ARM]->GetTranslation();

/I Calculate lower body joint location vectors

Quaternion bodyHip = waist + m_trackedLimb[PELVS]->GetTranslation();
Quaternion IHip = bodyHip + m_fixedLimb[L_HIP]->GetTransl ation();
Quaternion rHip = bodyHip + m_fixedLimb[R_HIP]->GetTranslation();
Quaternion IKnee = |Hip + m_trackedLimb[L_UP_L EG]->GetTranslation();
Quaternion rknee = rHip + m_trackedLimb[R_UP_L EG]->GetTranslation();
Quaternion |Ankle = IKnee + m_trackedLimb[L_LOW_LEG]->GetTranslation();
Quaternion rAnkle = rknee + m_trackedLimb[R_LOW_LEG]->GetTranslation();

/I Draw the upper body
m_trackedLimb[TORSO]->Draw(waist);
m_trackedLimb[NECK]->Draw(bodyNeck);
m_trackedLimb[HEAD]->Draw(bodyHead);

/I Draw shoulders

m_fixedLimb[L_SHOUL DER]->Draw(bodyNeck);
m_fixedLimb[R_SHOUL DER]->Draw(bodyNeck);
/I Draw upper arms
m_trackedLimb[L_UP_ARM]->Draw(lShoulder);
m_trackedLimb[R_UP_ARM]->Draw(rShoulder);
/I Draw lower arms

m_trackedLimb[L_L OW_ARM]->Draw(lElbow);
m_trackedLimb[R_LOW_ARM]->Draw(rElbow);
[/l Draw hands
m_trackedLimb[L_HAND]->Draw(IWrist);
m_trackedLimb[R_HAND]->Draw(rWrist);

/I Draw the lower body
m_trackedLimb[PELVS]->Draw(waist);

/I Draw hips
m_fixedLimb[L_HIP]->Draw(bodyHip);
m_fixedLimb[R_HIP]->Draw(bodyHip);

/I Draw uppper legs

m_trackedLimb[L_UP_L EG]->Draw(IHip);
m_trackedLimb[R_UP_LEG]->Draw(rHip);

/I Draw lower legs
m_trackedLimb[L_LOW_LEG]->Draw(IKneeg);
m_trackedLimb[R_LOW_LEG]->Draw(rKnee);
/I Draw feet
m_trackedLimb[L_FOOT]->Draw(lAnkle);
m_trackedLimb[R_FOOT]->Draw(rAnkle);

} // end RenderFigure
Figure 29: Therender Figure M ethod Of the CHumanM odel Class
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analytic calculations is not a practical method of deriving an offset quaternion which
accounts for the misalignment of the two coordinate systems.

When the human model is in the reference position, the limb segment
coordinate axes are aligned with the corresponding Earth-fixed axes. That is the x-axis for
each limb segment pointstoward thelocal north, they-axis points east and the z-axis points
down. The reference position for the human model is an “attention” type stance facing
North. The offset quaternions for each limb segment can be derived by noting that while

the user isin the reference position the equation

v = qsensorqofquofquensor (612)
istrue. Thisimplies that
qsensor qoff =1 (613)
and
qofquensor =1 (614)

These results and the inverse property of quaternion multiplication further imply that

qoff = qsensor (615)
while in the reference position. The quaternion, Qgensors 1S OUtPUL by the quaternion filter

algorithm and is thus known.

Complete compensation for the way in which all sensors are attached to the
limbs of a tracked subject can therefore be accomplished by ssimply setting g for each
limb segment to the inverse of the associated g,y While the subject to be tracked is
standing in apredetermined reference position. Theimplemented reference position for this
research is an attention type stance facing the local magnetic north Figure 30). The
calculated offset quaternion will remain valid as long as the sensor positions do not shift

position relative to the tracked limb segment.
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The same calibration method could be applied to amodel based upon the use
of homogeneous transformation matrices vice quaternions. Relations which are equivalent

to those given by Eq. (6.12) and Eq. (6.15) are

v=R RofrV (6.16)

sensor

and

Ry = R_lsensor (6 17)

where Reensor 1S @homogeneous matrix expressing the limb segment orientation relative to
a earth-fixed reference frame and R expresses the orientation of the limb segment

coordinate system relative to the that of the sensor. Again, since matrix inversion is very
expensive computationally in comparison to unit quaternion inversion, Eq. (6.17) is not

used in this research.

Figure 30: Body Model Calibration Reference Position
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D. SUMMARY

The body tracking system described in this chapter is able to track the orientation
of human limb segments using prototype MARG sensors. The MARG sensors are
calibrated via a series of eight rotations without the need for any specialized equipment.
The data from each sensor is processed by areduced order quaternion attitude filter which
is complementary in form. The incorporated filter algorithm is able to track limb segment
attitude through all orientations without singularities and continuously corrects for drift.
Filter output is a quaternion representation of the orientation of a limb segment relative to
an earth fixed reference frame.

The orientation quaternions are used to set the posture of a quaternion based human
model. All model segments are positioned and oriented using quaternion/vector pairsin a
z-axis down coordinate system. The human body model implements a smple calibration
method for correcting for misalignment between the coordinate systems of individual
sensors and limb segments. The calibration method only involves the inversion and
assignment of a single quaternion for each limb segment while the tracked subject stands
in areference position. The minimal computational demands of this method are largely due
to the overall smplicity of the human model itself. Human model limb segment Iengths
may be adjusted to account for human anthropomorphic differences.

The prototype MARG sensors where fabricated using low-cost off-the-shelf
components. Internal sensor circuitry supports magnetometer set/reset of MR film polarity
and allows manual adjustment of magnetometer null points. Analog MARG sensor output
digital conversion is performed external to the sensors using a PCl data acquisition card.

The system software was entirely implemented using C++. It issingle threaded and
runs on a standard Wintel desktop computer. The estimation update rateis at least 100 Hz
for three filters performing drift correction calculations on each iteration. Rendering frame

rateis maintained at 25 Hz.
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VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

The chapter describes experiments designed to test the performance of the inertial/
magnetic body tracking system. The quantitative and qualitative results presented
document the accuracy and robustness of the system under various dynamic and static
conditions.

The static experiments described relate to the stability, convergence properties and
accuracy of the orientation estimates produced by the quaternion attitude filter algorithm
when processing MARG sensor data. All static tests were single MARG sensor
experiments. Preliminary results are presented which quantitatively illustrate the dynamic
accuracy of the quaternion filter orientations. This data also allows some conjectures to be
made regarding system latency.

The qualitative experiments examine the performance of the system asawholein
relationship to the goal of robust posture estimation. The performance of the system while
using differential weighting of sensor data as well asincreased drift correction intervalsis
investigated. The ability of the system to track the posture of various limb segments of the
human body using three MARG sensorsis also qualitatively evaluated.

Thefinal section of this chapter examines the InertiaCube sensor and Ka man filter
algorithm used by Intersense Inc. to process inertial data [Ref. 27.]. The shortcomings of
this system for full body tracking applications are discussed. This discussion is based upon
both the observed performance of an Intersense system and an examination of available

research literature describing the implemented data filtering algorithm.

B. STATIC STABILITY

Orientation estimates based solely on angular-rate sensors are prone to drift
problems. Thus in the past, the idea of using inertial sensors to track orientation for

extended periods was often criticized due to the mistaken belief that the estimates would
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diverge over time. This criticism was applied regardless of the combination of sensors
actually in use and was mostly due to difficulties in understanding the complementary
characteristics of different sensor types and complementary estimation filters.

The drift characteristics of the quaternion filter algorithm and the MARG sensor
over extended periods were evaluated using static tests. In each of these experiments the
stability of the orientation estimate produced with the sensor stationary was monitored for
a specified period. Through the course of the experiments the estimated orientation was
recorded at 0.1 second intervals. Figures 31 through 34 display the results. Each plots the

four components of the estimated quaternion and the length of the quaternion error vector
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Figure 31: OneHour Static Test Of Orientation Estimate Stability, k=10, r = 1.0

Figure 31 graphically depicts the drift of each of the four components of the
guaternion estimate produced by the filter. It can be observed through examination of
Figure 31 that averagetotal drift isabout 1%. During the experiment shown, thefilter gain,
k (Eq. (5.15)), was set to unity. Equal weighting was given to both magnetometer and
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Figure 33: 15 Minute Static Test Of Orientation Estimate Stability,
No Accelerometer Input, k=10
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Figure 34: 60 Minute Static Test Of Orientation Estimate Stability,
No Rate Sensor Input, k =1.0

accelerometer data. It is expected that increasing thefilter gain to 4.0 would reduce the drift
error by afactor of four or to about 0.25 percent. However, due to the observed stability of
the filter over a one hour period, no further static experiments relating to stability were
conducted.

Experiments were also conducted in which magnetometer, accelerometer or rate
sensor data were disregarded by the filtering algorithm. These results are shown in figures
32, 33 and 34. As expected, Figure 32 shows continuous drift about the vertical axis of
approximately 1 degree per second. Poor stability about the North and East axesis apparent
in Figure 33. Here the total drift is on the order of 3 degrees per second. The greatest
possible difference between two unit quaternions occurs when they point in directions
which are exactly opposite each other. At that time the length of the error vector would be
two. Thus, the magnitude of the rms difference in both Figure 32 and Figure 33 cycles

between 0 and 2.

134



The lack of any drift in Figure 34 indicates that all drift is due to rate sensor bias.
Throughout these tests all limb segments of the human model were mapped to the single
sensor in use. The posture of the human model when viewed on the display monitor

reflected the results seen in the figures.

C. STATIC CONVERGENCE

Linear analysis of the quaternion filter and nonlinear simulation imply the transient
errorsin g will persist for atime period which isinversely proportional to the filter gain, k
(Eq. (5.15)). Specifically, by thetime t,, following the occurrence of atransient error, it
is expected that the error magnitude will be reduced to 37% of itsoriginal value (Eq. ). The
magnitude of the square of the error should be reduced by 37% by the time

t= 100 (7.1)

Experiments to test the static convergence of the filter following transient errors
were conducted to further validate the results of the linear analysis. The MARG sensor
itself was left in a stationary position throughout each of these experiments. Transient
orientation errors were introduced into the system by rotating a stable g estimate by an
error quaternion. Following this rotation, the filter was allowed to reconverge to the
previous estimate. Error quaternions representing orientation errors of 30 degrees where
used. Filter gains included 1.0, 4.0, 8.0, 16.0 and 32.0. Setting the filter gain to values
greater than 200 with an update rate of 100 Hz (as predicted by Eq. (5.44)) was found to
make the filter unstable. Equal weighting was given to both magnetometer and
accelerometer data. In each of these experimental trials the filter remained stable and re-
converged to the previous estimate in the time period predicted by linear theory. Figures 35
through 38 plot the magnitude of the quaternion filter criterion function (Eg. (5.10)) versus
time. These data were obtained following rotation of g by the indicated error quaternion.
Filter gains of 1.0, 4.0, 16.0 and 32.0 are shown. These figures represent a sample of the

results obtai ned.
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D. DYNAMIC RESPONSE AND ACCURACY

Preliminary experimentswere conducted to establish the accuracy of the orientation
estimates and the dynamic response of the system [Ref. 6.]. These experiments were
completed using a Hass rotary tilt table [Ref. 31.]. The table has two degrees of freedom
and is capable of positioning to an accuracy of 0.001 degrees at rates ranging from 0.001
to 80 degrees/second. In order to mitigate any possible magnetic field effects generated by
the servos of the tilt table, the sensor package was mounted on a nonferrous extension
above the table. The extension was approximately the length of a human forearm.

The preliminary test procedure consisted of repeatedly cycling the sensor through
various angles of roll, pitch and yaw at rates ranging from 10 to 30 deg./sec. After each
motion, the table was left static for approximately 15 seconds. The estimates produced by
the tracking system where converted to Euler angle form for easier comparison to the tilt
table rotations.

Figure 39 is a typical result of the dynamic accuracy experiments. The overall
smoothness of the plot shows excellent dynamic response. Accuracy was measured to be
better than one degree. The small impulses which can be observed each time motion is
initiated are hypothesized to be linear acceleration effects exaggerated by the “whipping”
motion of the extension on which the sensor was mounted. In qualitative tests, the
guaternion filter exhibited no difficulty in tracking orientations in which pitch angles

equaled or exceeded 90 degrees.

E. QUALITATIVE TESTING

1 Weighted L east Squares

The weighted least squares modification to the quaternion filter algorithm is
designed to allow orientation estimation to continue in the presence of changing magnetic
fields. Significantly reducing the weight given to magnetometer data will allow drift about
the vertical axis. However, this reduction may also make it possible to avoid large short

time period rotations about the vertical axisin the presence of changing magnetic fields.
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To examine the weighted least square function of the filter, a MARG sensor was
repeatedly subjected to a magnetic source. In each trial a speaker magnet was passed over
the sensor at a distance of approximately 1 cm. Magnetometer weighting values of 0.25,
0.5, and 1.0 were used. Thefilter gain, k, was 4.0 in al trials. Figures 40 through 42 plot
the rms difference between the orientation estimate before exposure to the field and during
exposure. As expected using a magnetometer weighting factor of 0.25 allows the greatest
immunity to magnetic field effects as reflected by Figure 42.

2. Posture Estimation

The purpose of the human body tracking system is to estimate the orientation of
multiple human limb segments and use the resulting estimates to set the posture of the
human body model whichisvisually displayed. Numerous experiments were conducted to
qualitatively evaluate and demonstrate this capability.

In each experiment three MARG sensors where attached to the limb segments to be

tracked. Due to the minimal number of sensors available tracking was limited to a single
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arm or leg. In the case of arm and limb segments, sensor attachment was achieved through

(=1
=1

the use of elastic bandages. In most cases this method appeared to keep the sensors fixed
relative to the limb. Sensor attachment was the most time consuming task when preparing
to track anew individual. Calibration for sensor/limb axes misalignment was the achieved
in a nearly instantaneous manner. Adjustment for differences in anthropometric
measurements were carried out on an “as needed” basis to allow capture of closed loop
postures.

Video recordings of the system in operation indicate that posture estimation was
accurate and showed very little lag. Figures 43 through 44 depict inertial tracking of

various limb segments.

3. Reduced Rate Drift Correction
It was hypothesized that increasing the drift correction interval for each sensor/filter

pair would allow full body tracking without an increase in processing power. To test this
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Figure 44. Closed Kinematic Chain Posture Using Three MARG Sensors
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Figure 45: Inertial Tracking Of theLeft Leg Using Three MARG Sensors
hypothesis, posture estimation was evaluated qualitatively while operating three actual and

13 simulated filter software objects. Filter update rates were maintained at 100 Hz.
However, only one filter object performed drift correction calculations on each update
cycle. Thisis equivalent to performing drift corrections for each filter object at a rate of
approximately 6 Hz. Filter gains where not changed to compensate since the most recently
derived drift correction factor was still used on every update cycle. Qualitative evaluation
of posture tracking indicated the effects of increasing the drift correction interval for each

filter object were negligible.

F. INTERSENSE INERTIACUBE

The InertiaCube (Figure 46) is an integrated inertial sensing device manufactured
by InterSense Inc. The InertiaCube senses angular rates about and linear accel eration along
each of three orthogonal body axes [Ref. 26.]. Manufacturers literature indicates that it

contains at least a two axis magnetometer [Ref. 37.] and thus is very similar in overall
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capability to the MARG sensors used in this research. InertiaCube data is processed by a
complementary separate-bias extended Kaman filter based upon an Euler angle
representation of orientation [Ref. 27.]. It has asix-dimensional state vector containing the
three Euler angles and three angular rate bias terms. Though the system was designed for
head tracking, head dynamics are not modeled. Nonlinear attitude computation is
accomplished through a second order integration step formula. System error dynamics are
obtained by normalizing about a nominal trajectory [Ref. 27.].

Qualitative evaluation of an Intersense 1S-300 orientation tracking system was
completed using both the manufacturers demonstration software and the body tracking
software developed for this research. When using the demonstration application the basis
of the filter in Euler angles becomes apparent each time the InertiaCube is subjected to a
pitch angle approaching +/- 90 degrees. In this attitude the roll and yaw values gyrate
widely while maintaining a constant sum or difference. When tested with the body tracking
software, the system was configured to output a quaternion representation of orientation.
While operating in this mode it was not possible to detect any singularities.

The ability of the InertiaCube to continuously correct for rate sensor drift wastested
by subjecting the sensor to a series of accelerations and then placing it on a flat surface.
When using either the demonstration application or the body tracking software, the system
exhibited its inability to correct for drift unless in a stationary state. Each time the sensor
was replaced on the flat surface the orientation estimate failed to match the true orientation
for a short time period before making a sudden and abrupt correction. This phenomenon
occurred regardless of the operating mode of the Intersense system and is in marked
contrast to continuously corrected estimates produced by the MARG sensor and the
guaternion attitude filter.

The strength of Kalman filtering liesin the inclusion of adynamics model for error
correction and prediction. In the absence of an accurate model, use of a Kalman filter is
likely to result in an unnecessarily complex algorithm which is prone to errors when the

model does not match the dynamics of the modeled system [Ref. 14.]. Since Kalman filter
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predictions are primarily based upon dynamics models, any prediction produced by a
model-less filter should be viewed with suspicion. The inclusion of adjustable gains to
control rms estimation error and attenuate magnetometer inputs raises doubts that the
Intersense system is actually using a Kalman gain to attain a statistically optimal estimate
of the system state. It appears instead that the system may implement a highly expensive
extended Kalman filter algorithm to perform atask which could be done quicker and faster
by a simpler algorithm such as the quaternion filter algorithm described in this research.
While the inability of the
Intersense system to continuously
correct for drift may not be a drawback
in head tracking applications, it is
doubtful that it will be able to function
properly in a constant high acceleration
applications such as full body tracking.
Thereare no periods of still timefor the
[imbs of a human being while walking.
Though no singularities were observed
in the experiments described here, the

use of Euler angles to describe the

orientation of a human arm which can Figure 46: Intersense InertiaCube
assume any attitude is questionable. The decision to date of Intersense not to allow direct
access to the signals produced by the InertiaCube sensor severely limits the application of

inertial tracking technology with this sensor.

G. SUMMARY

This chapter presents a limited set of experiments designed to document the
performance parameters of a prototype inertia/magnetic body tracking system. The

accuracy of system orientation estimates was quantitatively evaluated both statically and
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dynamically. The overall ability of the system to model human posture in real-time was
evaluated qualitatively. Examination in the light of human body tracking was also made of
the Intersense InertiaCube and filtering algorithms.

The experimental results presented indicate that with the application of the proper
algorithms and representations, inertial/magnetic orientation tracking can be used to
accurately track the posture of the human body. The static stability and convergence tests
show that the orientation estimates are stable and that linear analysis of quaternion filter
anaysisisvalid. The static accuracy and dynamic response experiments show the system
can produce orientation estimates which are accurate and timely enough to be used in real -
time body tracking applications. For applications in which the system may be subjected to
variable magnetic fields, the weighted |east square experiments show that inertial/magnetic
tracking may <till be expected to produce usable orientation estimates. Qualitative
experiments show increased drift correction intervals may be used to implement atracking
system which operates alarger number of filters simultaneously using limited processing.

Video recordings of the system in operation demonstrate that inertial/magnetic
orientation estimation produces accurate body posture estimates in real-time. Sensor and
body model calibration algorithms make the technology robust and easy to use. With the
addition of awireless link and an appropriate position tracking technology, it is apparent
that the prototype system represents a means of simultaneously tracking alarge number of
usersin alarge work areawithout the shortcomings of current motion capture technol ogies.

Experimentation with gains and scale factors makes is apparent that it is useful to
think of the rate sensor data as primarily serving to “quicken” the orientation estimates
produced using accelerometer and magnetometer data. In head tracking applications this
may be necessary in order to reduce lag and avoid the possibility of simulator sickness.
Quickening may also be needed in feedback control applications to ensure stability.
However, in some body tracking applications it may be possible to use simpler sensors
including only magnetometers and accelerometers with a relatively high filter gain. This

possibility presents an important areafor future research.
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VIII. SUMMARY AND CONCLUSIONS

A. INTRODUCTION

This research lays the groundwork for a system capable of sourceless tracking of
the entire human body. The technology of such a system should allow the tracking of
multiple users over awide area. Ultimately, each user could be inserted into a networked
synthetic environment in a fully immersive manner. While the basic ground work and
theory have been completed in this dissertation, much research remains to complete a full
body tracking system. Numerous technologies must be merged and adapted to produce a
practical body tracking system for networked synthetic environment applications.

The following outlines the work which needs to be done to achieve full body
tracking and makes suggestions regarding what directions this work should take. The
implications of this research are discussed. The final section of this document examines

what conclusions might be drawn from its contents.

B. MARG SENSORS

An optima inertial sensor would have the same size and form factor as a
wristwatch. It would include an embedded microprocessor on which thefilter algorithmis
implemented. The sensor would be have a self-contained power source and would
wirelessly transmit orientation data.

New sensor components continue to appear on the market. These sensors have
capabilities which are at least equal to and are often superior to those of the preceding
generation and are an order of magnitude smaller in size. Current technology aready
permits the construction of sensors which are much smaller than either the prototype
MARG sensors described here or the InterSense InertiaCube. Honeywell now offers the
HCM 1023 three-axis magnetoresistive sensor in a sixteen pin package with an 8.13 x 3.81
mm footprint. This unit is less than half the size of the HMC2003 with a nearly equal
sensitivity [Ref. 38.]. The Analog Devices ADXL202E is a two axis acceleration sensor
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integrated onto asinglemonolithic IC chip. It measures’5 x 5x 2mm and hasadigital output
[Ref. 2.]. Tokin America Inc. now offers a smaller version of the CG-16D ceramic gyro
designated the CG-L33. The CG-L 33 measures 8 x 16 x 5mm and has dightly improved
performance characteristics [Ref. 83.].

Smaller and cheaper integrated inertial sensors are on the horizon. In the Spring of
2001, it is expected that Micro Sensors, Inc. will release a 5 x 5mm micromachined rate
sensor with capabilities equal to those of the CG-L 33 [Ref. 63.]. In the Fall of 2000, Tokin
America, Inc. released in prototype the MDP-A3U7 3D Motion Sensor [Ref. 82.].
Manufacture’ sliterature states that this sensor unit contains in combination ceramic gyros,
acceleration sensors and terrestrial magnetism sensors and is capable of detecting the 3-
dimensional posture angle of a body to which it is attached in real time. The sensor
measures 25 x 36 x 22.5mm and interfaces via USB (Universal Serial Bus). Maximum
errors in all axes are claimed to be +/- 15 degrees. Maximum pitch and roll angles are
limited to +/- 60 degrees. It islikely that the large magnitude of the estimation errorsaswell
as the limited pitch and roll capabilities are due to manufacturer's data processing
algorithm and are not characteristics of the sensors themselves.

The prototype MARG sensors used in this research output nine analog signals
corresponding to the nine sensor axes. The Texas Instruments TLC2543 is an 11 channel,
fully configurable, analog to digital converter (ADC) onasingle|C.[Ref. 81.] Incoporation
of an ADC into the MARG sensor would ease data handling by replacing the 15 wires per
MARG sensor with 3 data wires and 2 power wires. The 3 data lines could be merged into
adata bus of 15 other MARG sensors. The ADC would also automate the magnetometer
set/reset circuit by providing clocked and, therefore, constant readings of set and reset
produced magnetic data. Using the difference of the two magnetic readings taken during
the set/reset cycle will result in magnetic data that is automatically temperature
compensated. Thisis something that was not possible with the analog MARG sensor used

in this research.
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In earlier body tracking work, the angular rate sensors were bias compensated in
software [Ref. 6.]. In the research described in this document, the hardware is considered
stable enough to eliminate the need for these additional calculations. However, integration
of abiased angular rate signal will cause a steady state error in a complementary filter. In
order to achieve better system performance, this correction should be hardware
implemented in the rate sensor conditioning circuitry using capacitive coupling. Such abias
compensation circuit is depicted in Figure 47.

It is expected that use of the components described here would result in a sensor
which is as much as five times smaller than the prototype used in this dissertation. Such a
sensor would be less expensive, easier to calibrate and mount to a human body and perhaps

more accurate as well.

LMCé6494

GND

Figure 47:. MARG Rate Sensor Bias Compensation Circuit Schematic
From [Ref. 61.]
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C. HUMAN BODY MODELING

The purpose of the human model used in this research is to demonstrate the
simplicity of the mathematics underlying an articulated body model designed to use
accurate fixed reference frame orientation data. Speed of rendering and length of
development where primary considerations rather than visual appearance.

Future research should expand this paradigm to include anatomical datato makethe
model correspond more closely to the human skeleton in overall proportion and relative
placement and attachment. The model should remain mathematically simple. Due to the
accuracy and low cost of inertial/magnetic orientation tracking, thereis no need to include
joint angle constraints or the ability to track multiple segments using a single sensor.
Continuing the direct use of quaternions to orient limb segments and vector addition to
position them, may or may not be advantageous depending upon the rendering speed
advantages of matrix based graphics hardware and the available network bandwidth.

Current human animation standards model articulated structures using segments
and joints [Ref. 33.][Ref. 10.]. Unlike the model used in this research which orients limb
segments individually using data referenced to an earth-fixed frame, typica humanoid
animation is performed by altering the angle or angles for each individua joint. The
orientation of each limb segment is described relative to the inboard segment to whichiit is
attached. Conversion of earth-fixed reference frame data to a series of relative joint angles
could be accomplished. However, joint angle animation is actualy less efficient than the
method used in this research while the network bandwidth requirements are roughly
comparable. Thus, joint angle based standards should be expanded to allow this aternate
method of setting body posture. Alternatively, efficient routines for converting earth-fixed
limb segment orientations to sequential relative joint angles might find wide use.

The current calibration algorithm is effective and easy to use. Once the subject of
the tracking experiment stands in a predefined reference posture, sensor to limb segment
offset compensation can be accomplished in a time period which appears to be

instantaneous. The calibration is based on the assumption that the [imb segment coordinate
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axes are aligned with earth-fixed axes referenced to the local magnetic field. Since it is
difficult to have a human subject stand in a very precise pose, in reality there is likely to
always be some misalignment between the two coordinate systems. Using the ability of the
sensor mounted magnetometers to find the local north will allow the implementation of a
two step calibration algorithm. The human subject will still be required to stand in a
predefined position, however there will no longer be any requirement to face the local

magnetic north. This north finding ability will aso make it possible to reduce offset errors
further when the subject does face the local north. “Visual tuning” of offsets could be
accomplished by “on-screen” adjustment of the displayed posture.

In order to ensure that the user can effectively interact with the virtual environment,
the model used by theinertial tracking system must be scaled to the user's dimensions [ Ref.
78.]. Thistype of calibration ensures that, for example when a subject touches their right
shoulder with their left fingertips, their virtual human representation will do so as well.
Currently, the model is calibrated to body dimension ratios manually through physical
measurement. This is an extremely error prone and time consuming process. Some body
dimensions such asinseam are easily measured. Using aminimal set of such dimensionsit
should be possibleto accurately calcul ate other dimensionsthrough a calibration algorithm.
The algorithm might involve placing the subject in a series of predefined positions as well
as model adjustment based on the rendered posture while in these positions. Such an
algorithm would make it possible for a user of any size to easily enter the virtual
environment.

At the time of this writing, 3D color laser scanning is being used to digitize the
dimensions of recruits at the Marine Corps Recruit Depot in San Diego, CA. The scanning
processrequiresatotal of 15 - 20 seconds and produces adetailed anatomical model of each
subject [Ref. 19.].This same technique could be used to produce a human model that is
perfectly sized for each individual.

There is no end to the amount of effort that could be expended to produce a body

model with a realistic appearance. A great deal of research has already been done in this
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area. Limb segment surfaces could be made anatomically accurate. Muscles and fat could
be modeled. Redlistic clothing could be added. Hair and facia expressions could be
modeled. Individual fingers could be tracked using another technology. In the end, the
rendering hardware and the application will dictate how much of this work should be

applied to the human body model presented here.

D. INTERGRATION OF INERTIAL AND RF TECHNOLOGIES

The ultimate goal of this project is to insert humans into a networked virtual
environment. A network of 15 MARG sensors will track body posture. In order to
accurately place theicon of the user in the virtual environment, it will be necessary to know
body location as well as the posture of the body. To achieve this, the position of one body
l[imb segment must be tracked. Unlike acoustic position tracking, Radio Frequency (RF)
positioning systems are very fast and long range by their nature. Large working volumes
can be covered using a minimal amount of equipment and positional error magnitudes
remain constant though out. RF positioning systems can penetrate objects, walls, and the
human body, and are able to operate with no line-of-sight. Thus, RF positioning is currently
seen as the technology which will best complement the sourceless capabilities of inertial/
magnetic sensing and enable tracking of a multiple users over awide area.

Current examples of RF positioning systemsinclude the Global Positioning System
(GPS) and Long Range Navigation (Loran). In an outdoor application where extremely
accurate positioning is not required, GPS might be used to locate the position of the tracked
subject. DGPS has aready been successfully integrated with inertial and magnetic sensors
in AUV navigation systems such as the SANS described in [Ref. 7.][Ref. 96.]. Recently,
MIT has developed an RF positioning system that shows excellent performance for indoor
tracking [Ref. 24.]. This system has an accuracy of 2mm within arange of about 5 meters.
For 3 DOF tracking, aminimal system requires four transmitter stations placed at known
locations, and areceiver unit attached to the body. Such a system could be easily integrated
with a15 MARG sensor system.
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E. WIRELESS COMMUNICATIONS

Tethering atracked subject to aworkstation with wiresincreases user encumbrance
and limits the application of hybrid inertial body tracking technology. The MARG sensors
are sourceless sensors, and RF positioning systems are self-contained receiving units. They
do not require wire connectionsto any external sourcesin order to operate. Thus, apractical
hybrid system would incorporate multiple MARG sensors, at |east one RF position tracker
and a wearable electronics unit capable of processing sensor data. This sensor data would
be packaged into a seria bit-stream for wireless transmission to a base el ectronics package.
The base unit would further process the sensor data for submission to a networked virtual
environment and possible retransmission along with other virtual environment data back
the user.

The wearable electronics could be a wearable computer such as ViA [l PC from
ViA Inc. [Ref. 89.] The processor and batteries of Flex PCs are configured as awaist belt
that can be easily and comfortably worn. Data from MARG sensors and the RF position
system could be routed to such a wearable PC. The role of the wearable PC would be to
collect and process the data into a desirable state vector form, and wirelessly transmit the
state vector to a VE station. The state vector may contain body position coordinates and
limb orientation data as well as other forms of body posture representation.

The wearable PC and the SE base station would be linked through a wireless |ocal
area network (WLAN). One possible implementation of the WLAN is to use Lucent
Technologies WaveL AN wireless products. The minimum implementation requires one
WavePOINT wireless bridge and one WaveL AN PCMCIA card. Based on experimental
results, the datarate of suchaWLAN isabout 1.4 Mbps at arange of 100 meters. Therange
can be up to 300 meters, but data rate will decrease to 100~500 Kbps, depending on the
transmission environment. The maximum data rate requirement for the body suit is
162K bps, assuming that the body suit has fifteen 9-axis MARG sensors sampled at100Hz,
and each axisis sampled by a12-bit AD converter. If sensor datais processed by embedded
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microprocessors or by the wearable computer and 15 unit quaternions are transmitted, the
bandwidth requirement could be decreased to approximately 54K bps.

Power will be supplied by rechargeable, hot-swappable batteries. By making
batteries hot-swappable, endurance would not be a problem as long as each battery charge

allows operation for a reasonable length of time.

F. FILTERING

The theory and development of the quaternion attitude filter described in this
document and in [Ref. 51.] islargely complete. Experimental work involving the selection
of filter gainsin various operating regimes remainsto be completed. Though Kalman filters
are considered statistically optimal, it remains to be see whether such a filter could be
developed for and would be of benefit to this application. Only after a Kalman filter has
been devel oped will it be possible to determine whether it would be a better choice than the
complementary filter based on Gauss-Newton iteration described in this research.

Kaman filtering is highly dependent on the quality of the incorporated process
model. When applied to human body motion tracking, Kalman filter design requires an
adequate dynamic model of the human musculoskeletal system, and the measurement
statistics of the MARG sensors and RF positioning system to be used [Ref. 14.]. Dynamic
models of the musculoskeletal system are well established and widely used for computer
simulations of human body motions [Ref. 34.]. These models are given in the form of
second order differential equations contai ning parameters representing body segment mass,
center of mass, and moments of inertia. Though these models are ideal for computer
simulations of human body motions, they are computationally too complex to work in a
system requiring real-time tracking of multiple users wearing multiple sensors.

One possible approach to the modeling problem is to develop a model that is
adequate but not overwhelmingly complex. Each limb segment could be considered
independently of the others, or possibly motions of upper body segments could be

considered independently of motions of lower body segments. This approach suggests that

154



the process model needed for Kalman filtering may not need to make use of articulated
body models, but could treat each limb segment as a single rigid body moving under the
influence of forces produced by muscles and connective tissues [Ref. 96.][Ref. 28.]. The
availability of reliable MARG sensors allows the gathering of statistical data needed to
construct the model.

[Ref. 48.] describes the preliminary development of a reduced order Kalman filter
for body tracking applications. To reduce the dimension of the state vector and smplify and
linearize the state equations, Gauss-Newton iteration is utilized to compute the optimal
guaternion relating measured to computed acceleration and magnetometer values. This
filter work, like that described in [Ref. 27.], makes no attempt to model the dynamics of

human motion.

G. A PROTOTYPE INERTIAL TRACKING BODY SUIT

In order to track ahuman in aVE, it will be necessary to outfit the user with a body
suit. This suit would incorporate multiple MARG sensors, at |east one RF position tracker
and an electronics unit capable of processing sensor data. Avoiding encumbrance to the
user and the method of sensor attachment would be primary concernsin designing the suit.
Processing of datawould be divided between the sensors themsel ves, the wearable PC and
a base system. Decisions would have to be made regarding where exactly these divisions
should be made. Such decisionswould be driven by the need to reduce latency and increase
resol ution and registration. Factorsinvol ved would include transmission bandwidth and the
processing power of the various components.

Two key factors must be considered when determining sensor placement and the
method of attachment. The sensors must be reasonably stable relative to the bone structure
of the user and the body suit and sensors must be easily donned. Relative motion between
the bone structure and the sensor will be an additional source of noise and cause the sensors
to report attitudes which do not correspond to the actual posture of the user. Most human
models only attempt to approximate the human skeleton system. For instance the actual
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complexities of the shoulder and spine are not captured by the human model described in
this research. Thus, sensors must be attached and placed in a manner which will not

exaggerate the simplifications of the model. [Ref. 78.]

H. POSTURE DATA IN A NETWORKED SYNTHETIC ENVIRONMENT

Networked synthetic environments suffer from limitations of bandwidth,
processing power and minimum transmission times. Work needs to be completed to
facilitate the insertion of a high-resolution human into anetworked synthetic environment.
This goal requires research into different methods of encapsulating gesture data and the
trade-offs involved in processing at various nodes in the network. Once this has been
completed an efficient method for sending and processing this data could be devel oped.

Quaternion representation of orientation allows all attitudes to be represented
without singularities. If a human model is composed of 15 separate segments, describing
this posture using unit quaternions requires 45 floating point numbers. If the same model
has 60 degrees of freedom, then 60 joint angles must be transmitted. Transmission of
homogenous transform matrices will require five times the bandwidth of either method.
Joint angle representation will require the use of forward kinematics. Update of the posture
of a 15 segment human model using quaternions will require 840 scalar operations. Thisis
an order of magnitude lessthan the 3,780 scalar operations needed to reset the posture using
transform matrices or joint angles. Quaternions do not allow the possibility of applying
joint constraints, but given adequate tracking accuracy this should not be a drawback.

Thelag or delay of the posture data being received at remote nodes of the network
presents another problem area. For instance, in a virtual battlefield simulation network
delays may cause entities to be targeted based on a position they no longer occupy since an
updated position has not yet been received. It isnot likely that network transmission times
will be significantly reduced in the near future. A common approach to this problem is
prediction or dead reckoning based on the last update received [Ref. 98.]. Of course,

predicting the future position or posture of ahuman is more difficult than predicting that of
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avehicle due to numerous degrees of freedom, and the wide ranges of speed and motionin
each limb segment. To accomplish such a prediction, velocity or rate data as well as
location data must be sent across the network. Between position updates, the latest vel ocity
data could be integrated or Kalman filtering could be used to predict the current position.
Using this scheme, position updates could be sent only occasionally to correct errorsdueto

inaccuracies in the velocity measurements.

l. CONCLUSIONS

This research has demonstrated a new technology for tracking the posture of an
articulated rigid body. The technology is based on the use of inertial/magnetic sensors to
independently determine the orientation of each link in the rigid body. Though the primary
application described here was motion capture for inserting humans into networked virtual
environments, inertial/magnetic orientation tracking could be applied to a broad range of
problems which require tracking of an articulated structure without being continuously
dependent upon an artificially generated source. The articulated body can be either animal
or machine.

At the core of the system is an efficient complementary filter which uses a
guaternion representation of orientation. Formulation of the filter is based upon the
Orthogona Quaternion Theorem which is presented and proved in this document. Error
minimization is accomplished using Gauss-Newton iteration. The filter can continuously
track the orientation of human body limb segments through in al attitudes without
singularities. Drift corrections are made continuously with no requirement for still periods.
Though thefilter is nonlinear, it is shown through nonlinear simulations and actual system
performance that linear analysis of the filter is relevant and can by used as a method for
selecting scale factors and predicting performance.

Thefilter processes datafrom MARG sensors which contain components typically
combined to form an inertial navigation system. The sensor has nine axes which include

three orthogonal angular rate sensors, three orthogonal linear accelerometers and three
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orthogona magnetometers. All sensor components are of asmall form factor. Methods for
conditioning and digitizing the output of the individual components are presented.
Magnetometer and accel erometer data are used to create earth-fixed reference vectors. Rate
sensor datais used to quicken the orientation estimates. While this quickening istypically
necessary in feedback control applications, it may not be needed in low acceleration
applications [Ref. 57.]. Sensor calibration is achieved using a novel calibration routine
which requires no specialized equipment.

Articulated body postureisrepresented using amodel based entirely on quaternion/
vector pairs. Individua limb segments are oriented independently using a quaternion
representation of the orientation relative to an earth-fixed reference frame. The model is
mathematically simple. This simplicity reduces significantly the number of calculations
needed to set the model posture. The underlying simplicity makes possible a quick and
accurate calibration algorithm which compensates for misalignments between sensor and
limb segment coordinate axes. The model may be adjusted to match the anthropometric
measurements of an individual human subject.

The implemented system tracks human limb segments accurately with a 100 Hz
update rate. Experimental results demonstrate that inertial/magnetic orientation estimation
is a practica method of tracking human body posture. With additional sensors, the
architecture produced could be easily scaled for full body tracking. This new technology
overcomes the limitations of motion tracking technologies currently in use. It is potentially
capable of providing wide area tracking of multiple users for synthetic environments and

augmented reality applications.
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APPENDI X A.DERIVATION OF GAUSS-NEWTON ITERATION
EQUATIONS

Eq. (5.9) defines the quaternion filter error vector as

&a) = Yo-¥(@) (5.9)
where y, denotes a measured value and {(g) is the calculated value based on the current

estimate . The square of the error or the scalar squared error criterion function is given by

Eq. (5.10)

j @ = &@&a) (5.10)
The criterion function is minimized by finding an “adjustment” to g termed Cq.

The non-linear function, y(¢) can be approximated by linearizing about §. The

linearization is completed using the first two termsin the Taylor series expansion

Y(6+Da) = J(8) +XDg + O(Dg’) (A1)
where § and bq are treated as four-space column vectors and X is the 6 x 4 multi-
dimensional derivative of y(¢) with respectiveto ¢. (See Appendix B for further discussion

of the X matrix) Ignoring the non-linear portion of the Taylor series expansion and

substituting Eq. (A.1) into Eq. (5.9) produces a linear approximation of the error vector.

&(g+Da) = y,-¥(&8) —XDq = &@)—XDq (A2

From the inverse law of transposed products, it follows that

J(¢+Da)’ = &@) -Dg' X" (A3)

Thus from Eq. (A.2) and Eq. (A.3), the criterion function can be approximated by

j (8 = &&)"&a)-¥a) xDg—Dg'X&(a) + Dy X XDq (A.4)
If Xisof full rank (full column rank) thisisapositive definiteformin cq. Each of theterms
in Eq. (A.4) evaluates to a scalar. By noting this fact and again using the inverse law of
transposed matrices, it follows that
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&) 'XDg = Dg'X &) (A.5)

This result allows the approximated error criterion function to be written

j (&) = &(8) &a) -2Dq'x"&(a)+ Dg'X"XDg (A.6)
From differential calculus, the minimum or maximum of a function occurs where

the slope of its tangent or derivative is equal to zero. The gradient (vector derivative) of

sguared error criterion function, j (g) isgiven by

9= _2x"&@g) + 2X"XDq (A7)
When the criterion function is apositive definite form, the unigue minimum of Eq. (A.6) is

found by equating the gradient to zero and solving for cq. Thisresult isthe Gauss-Newton

step given by Eq. (5.11) as
Dq = [XTX]_lee(q) = sX"e(q) (5.12)
The above approximation ignores the o(bq? term based on the assumption that Eq.
(5.11) will be evaluated iteratively [Ref. 51.]. Simulations have demonstrated that Newton

iteration, which takes in account this term, performs no better if it is assumed that all

estimation errors are relatively small.
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APPENDI X B. DERIVATION OF THE X MATRIX

There are an infinite number of quaternions that can be used to represent any given

orientation. These quaternions differ by a scalar multiplier. If q is a unit quaternion and

d = aq wWhere a isany non-zero scalar, then

jal” = a® (B.1)
and
avg " = aqv?d = qug? (B.2)
a

The elements of the 6 x 4 X matrix are the partial derivatives of the computed
measurement vector, y(¢) with respect to each of the components of the estimated

orientation quaternion, g.

Given

y(@) = [Ve(gtma), Ve(gng)]T = [hh,hgb, b,b,]T (B.3)

Then, the X matrix is given by

The ith column of X is

14,
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14,

fbs
10,

ﬂqg
i,
fid,
i
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fid,
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By the product rule of differential calculus, it follows that

v _aﬁq + mﬂq 19" nd + 1nﬂq B.6
o eﬂ%mq J T8 f@o a+a oo (8.6)
Similarly for columns two through three
ﬂ - q’\_l + mﬁ ﬂj_n +" 1nﬁ B7
4, gﬁqcimq ¢ 14, T8, q 1910 (B.7)
LIV (IR [ (ISP (<1 B.8
T, &1 0 e, 1 0 M (B8
~—1

W - B g g imdd, Wong g0 (89
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Also from the product rule of differentia calculus

1 _ ‘Ilq ﬂq _
g @ Y= . qﬂQ. =0 (B.10)
1
Solving for}% produces
-1
e (8.11)

This result can be substituted into Eqg. (B.6) through Eqg. (B.9) to produce the general form

- aeqld tmd8 e 170 g6y 61 186
& ﬂ_qlq oma+a Mg &9 Tg PR 150 (B.12)

<o
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=
o

To complete this derivation of X, the partial derivatives of y(¢) with respect to a g of any

length are written

1;”30 =(1000) =1 (B.13)
%:(0100):i (B.14)
1'1”_(1_‘12:(0010):1 (B.15)
%1:(0001):k (B.16)
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When using a g of any arbitrary length, an X matrix derived using the above method will
not be of full rank and the resulting regression matrix will be singular and non-invertible.

This is due to the result given by Eq. (B.2). Constraining g to be of unit length will

eliminate this problem.
The following partial derivatives of the inverse of q are derived by assuming g isa

unit quaternion so that ¢ = q. Under this assumption

-1

19 -1000 =1 (B.17)
Tdg
g _ (0-100) = 4 (B.18)
Ta,
g _ (00-10) =5 (B.19)
Ta,
g _ (000-1) = —k (B.20)
Ta,

SinceEq. (B.17) through Eq. (B.20) are partial derivativesof constrained vectors, Lagrange
multipliers should be used in their formulation [Ref. 76.]. Evidently, Lagrange multipliers
were not used in the simple derivations shown here. However, computational experiments

show that the X matrix so derived is of full rank so that the inverse of the regression matrix

s = x'x existsand can be used to correctly obtain g by Gauss-Newton iteration [Ref. 51.].
In this dissertation, this 4 x 4 problem is further reduced by combining Eq. (B.17) through

Eq. (B.20) with the orthogonal quaternion theorem to achieve a still ssimpler 3 x 3 matrix

inversion Gauss-Newton method.
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APPENDIX C. VIDEO DEMONSTRATION

This section briefly describes the contents of each portion the video appendix.

1. Sensor Calibration

This portion demonstrates the sensor calibration algorithm. The calibration process
is described as each step is completed. For comparison purposes, tracking performance is

shown both before and after calibration.

2. Body Model Calibration

This portion demonstrates the body model calibration algorithm. The reference
position is described and visually displayed. The effect of the calibration algorithm on the
displayed posture can be seen.

3. Posture Tracking

This portion demonstrates the dynamic performance of the prototype inertial/
magnetic body tracking system. The tracking of various limb segments is shown.
Adjustment of the model dimensionsis performed to allow display of closed |oop postures.

Various filter gains are used through out this video segment.

4. Magnetic/Gravity Tracking

Dynamic performance of the system without the use of rate sensor datais shown.

5. Reduced Drift Correction

The dynamic performance of the system when performing drift correction at arate
of approximately 6 Hz is shown. Overall performance is observed to vary little from that

seen in the Posture Tracking segment of the video demonstration.

6. InterSenselnertiaCube
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Video demonstration of the inability of the filtering algorithms associated with the
InterSense InertiaCube to continuously correct for drift. This performance is contrasted

visualy against the MARG sensor and the quaternion filter algorithm.
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